DOI QR코드

DOI QR Code

Changes in Productivity and Morphological Characteristics of Zostera marina Transplants

이식된 잘피의 생산성 및 형태적 특성 변화

  • Park, Jung-Im (Department of Biological Sciences, Pusan National University) ;
  • Li, Wentao (Department of Biological Sciences, Pusan National University) ;
  • Kim, Jeong-Bae (South Sea Fisheries Research Institute, NFRDI) ;
  • Lee, Kun-Seop (Department of Biological Sciences, Pusan National University)
  • 박정임 (부산대학교 생명과학과) ;
  • ;
  • 김정배 (국립수산과학원 남해수산연구소) ;
  • 이근섭 (부산대학교 생명과학과)
  • Published : 2009.02.28

Abstract

Since significant losses of seagrass coverage have been reported from many parts of the world, numerous restoration projects through seagrass transplantation have been attempted worldwide. Different survival rates and establishment time of transplants have been reported depending on transplanting time and methods. The staple method, which is direct seagrass planting method using staples to anchor seagrass transplants on the sediments, have been widely adopted in seagrass transplanting because this method achieves high survival rates in various sediment environments. To assess the morphological plasticity and the growth characteristics of transplants, we transplanted eelgrass, Zostera marina in December 2004 using the staple method. Shoot density, morphological characteristics and leaf productivities of the transplanted shoots and shoots of natural eelgrass beds in the vicinity of the transplanting site and environmental parameters in the planting site were monitored for about 1 year postplanting monthly. Transplant shoot density increased without initial decline, while leaf width and sheath length of transplants decreased after transplanting. Leaf productivities per shoot of transplants also considerably lower than those of natural shoots for the first 3 months post-transplanting. Shoot density, morphological characteristics and leaf productivity per area of transplants became similar to those of natural population about 1 year after transplanting. Although eelgrass transplants might have experienced some transplanting stress during the early stage of the transplantation, transplants appeared to adapt well to new environments of the transplanting site.

최근 훼손된 잘피서식지의 복원이 다양한 이식방법을 통하여 시도되고 있다. 이식된 잘피는 이식시기와 이식방법에 따라 생존율과 착생기간 등이 차이를 보인다. Staple method는 잘피를 직접 식재하는 방법으로 잘피 이식에서 가장 일반적으로 이용되고 있는 방법이며, 다양한 퇴적물 환경에서 높은 생존율을 보이는 방법이다. 본 연구에서는 staple method로 이식된 잘피의 정착과정을 파악하기 위하여 초겨울에 잘피를 이식한 후, 이식된 잘피의 밀도, 형태적 특성, 생산성의 변화와 이식 장소의 환경요인을 2004년 12월부터 약 1년 동안 월별 조사하였다. 조사된 이식잘피의 생리생태학적 특성을 이식 장소 인근에 자생하고 있는 잘피 개체군과 비교하였다. 이식된 잘피는 초기 밀도 감소가 발생하지 않았으나, 잎의 폭, 엽초의 길이 등이 이식초기에 감소하여 이식개체들이 이식충격을 받은 것으로 보였다. 개체별 잎의 생산성도 이식 초기에는 자생개체들보다 현저히 낮은 값을 보이다가 약 4개월 후 이식개체와 자생개체의 생산성이 유사한 경향을 보였다. 이식된 잘피는 자생하는 잘피와 마찬가지로 봄에 급격히 성장하였으며, 자생개체보다 낮은 밀도로 이식되었으나, 약 1년 후에는 자생잘피 개체군의 밀도와 유사해졌다. 이식된 잘피들이 이식초기에 이식충격을 받았지만, 비교적 짧은 기간 내에 새로운 이식 장소에 잘 적응하는 것으로 나타났다.

Keywords

References

  1. 해양환경공정시험방법. 2005. 해양수산부, 400pp
  2. Addy, C.E., 1947. Eel grass planting guide. Md. Conserv., 24: 16−17
  3. Bostrom, C., C. Roos and O. Ronnberg, 2004. Shoot morphometry and production dynamics of eelgrass in the northern Baltic Sea. Aquat. Bot., 79: 145−161 https://doi.org/10.1016/j.aquabot.2004.02.002
  4. Calumpong, H.P. and M.S. Fonseca, 2001. Seagrass transplantation and other seagrass restoration methods. In: Global Seagrass Research Methods, edited by Short, F.T., R.G. Coles and C.A. Short, Elsevier, Amsterdam, pp. 424−443
  5. Davis, R.C. and F.T. Short, 1997. Restoring eelgrass, Zostera marina L., habitat using a new transplanting technique: The horizontal rhizome method. Aquat. Bot., 59: 1−15 https://doi.org/10.1016/S0304-3770(97)00034-X
  6. Enriquez, S., M., Merino and R. Iglesias-Prieto, 2002. Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar. Biol., 140: 891−900 https://doi.org/10.1007/s00227-001-0760-y
  7. Frederisken, M., D. Krause-Jensen, M. Holmer and J.S. Laursen, 2004. Spatial and temporal variation in eelgrass (Zostea marina) landscapes: influence of physical setting. Aquat. Bot., 78: 147−165 https://doi.org/10.1016/j.aquabot.2003.10.003
  8. Fishman, J.R., R.J. Orth, S. Marion and J. Bieri, 2004. A comparative test of mechanized and manual transplanting of eelgrass, Zostera marina, in Chesapeake Bay. Restor. Ecol., 12: 214−219 https://doi.org/10.1111/j.1061-2971.2004.00314.x
  9. Fonseca, M.S., 2007. What has changed with seagrass restoration in 58 years? In: 19th Estuarine Research Federation Abstracts. Providence, Rhode Island, pp. 64
  10. Fonseca, M.S., W.J. Kenworthy and F.X. Courtney, 1996. Development of planted seagrass beds in Tampa Bay, FL, USA: I. Plant components. Mar. Ecol. Prog. Ser., 132: 127−139 https://doi.org/10.3354/meps132127
  11. Fonseca, M.S., W.J. Kenworthy, F.X. Courtney and M.O. Hall, 1994. Seagrass planting in the Southern United States: Methods for accelerating habitat development. Restor. Ecol., 2: 198−212 https://doi.org/10.1111/j.1526-100X.1994.tb00067.x
  12. Fonseca, M.S., W.J. Kenworthy and G.W. Thayer, 1998. Guidelines for the conservation and restoration of seagrasses in the United States and adjacent Waters. NOAA Coastal Ocean Program/Decision Analysis Series NO. 12. NOAA Coastal Ocean Office, Silver Spring, MD, 222 pp
  13. Kentula, M.E. and C.D. McIntire, 1986. The autecology and production dynamics of eelgrass (Zostera marina) beds. Mar. Biol., 66: 59−65
  14. Kenworthy, W.J. and M.S. Fonseca, 1977. Reciprocal transplant of the seagrass Zostera marina L. Effects of substrate on growth. Aquaculture, 12: 197−213 https://doi.org/10.1016/0044-8486(77)90061-8
  15. Kenworthy, W.J. and M.S. Fonseca, 1992. The use of fertilizer to enhance growth of transplanted seagrasses Zostera marina L. and Halodule wrightii Aschers. J. Exp. Mar. Biol. Ecol., 163: 141−161 https://doi.org/10.1016/0022-0981(92)90045-C
  16. Kim, J.B., J.-I. Park, C.-S. Jung, P.-Y. Lee and K.-S. Lee, 2009. Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean peninsula. Aquat. Bot., (In Press)
  17. Huh, S.H. and C.L. Kitting, 1985. Trophic relationships among concentrated populations of small fishes in seagrass meadows. J. Exp. Mar. Biol. Ecol., 92: 29−43 https://doi.org/10.1016/0022-0981(85)90020-6
  18. Lee, K.-S. and K.H. Dunton, 1997. Effects of in situ light reduction on mainteance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex Konig. J. Exp. Mar. Biol. Ecol., 210: 53−73 https://doi.org/10.1016/S0022-0981(96)02720-7
  19. Lee, K.-S. and K.H. Dunton, 1999. Influence of sediment nitrogen availability on carbon and nitrogen dynamics in the seagrass Thalassia testudinum. Mar. Biol., 134: 217−226 https://doi.org/10.1007/s002270050540
  20. Lee, K.-S. and K.H. Dunton, 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser., 196: 39−48 https://doi.org/10.3354/meps196039
  21. Lee, K.-S. and S.Y. Lee, 2003. The seagrasses of the republic of Korea. In: World Atlas of Seagrasses: present status and future conservation, edited by Green, E.P., F.T. Short and M.D. Spalding, University of California Press, Berkeley pp. 193−198
  22. Lee, K.-S., C.K. Kang and Y.S. Kim, 2003. Seasonal dynamics of the seagrass Zostera marina on the south coast of the Korean peninsula. J. Korean Soc. Oceanogr., 38: 68−79
  23. Lee, K.-S. and J.-I. Park, 2008. An effective transplanting technique using shells for restoration of Zostera marina habitats. Mar. Pollut. Bul., 56: 1015−1021 https://doi.org/10.1016/j.marpolbul.2008.02.010
  24. Lee, K.-S., J.-I. Park, Y.-K. Kim, S.R. Park and J.-H. Kim, 2007. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar. Ecol. Prog. Ser., 342: 105−115 https://doi.org/10.3354/meps342105
  25. Lee, K.-S., S.R. Park and J.B. Kim, 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol., 147: 1091−1108 https://doi.org/10.1007/s00227-005-0011-8
  26. Lee Long, W. and R.M. Thom, 2001. Improving seagrass habitat quality. In: Global Seagrass Research Methods, edited by Short, F.T., R.G. Coles and C.A. Short, Elsevier, Amsterdam pp. 407−424
  27. Martins, I., J.M. Neto, M.G. Fontes, J.C. Marques and M.A. Pardal, 2005. Seasonal variation in short-term survival of Zostera noltii transplants in a declining meadow in Portugal. Aquat. Bot., 82: 132−142 https://doi.org/10.1016/j.aquabot.2005.03.006
  28. McRoy, C.P. and C. McMillan, 1977. Production and ecology and Physiology of seagrasses In: Seagrass Ecosystems: A Scientific Perspective, edited by McRoy C.P. and P. Helfferich, Dekker, New York, pp. 53−88
  29. Meehan, A.J. and R.J. West, 2002. Experimental transplanting of Posidonia australis seagrass in Port Hacking, Australia, to asses the feasibility of restoration. Mar. Pollut. Bul., 44: 25−31 https://doi.org/10.1016/S0025-326X(01)00148-5
  30. Meinesz, A., G. Caye, F. Loques and H. Molenaar, 1993. Polymorphism and development of Posidonia oceanica transplanred from different parts of the Mediterranean into the National Park of Port-Cros. Bot. Mar., 36: 209−216
  31. Orth, R.J., M.C. Harwell and J.R. Fishman, 1999. A rapid and simple method for transplanting eelgrass using single unanchored shoots. Aquat. Bot., 64: 77−85 https://doi.org/10.1016/S0304-3770(99)00007-8
  32. Orth, R.J., M.L. Luckenbach, S.R. Marion, K.A. Moore and D.J. Wilcox, 2006. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot., 84: 26−36 https://doi.org/10.1016/j.aquabot.2005.07.007
  33. Paling, E.I., M. Keulen, K. Wheeler, J. Phillips and R. Dyhrberg, 2001. Mechanical seagrass transplantation in Western Australia. Ecol. Eng., 16: 331−339 https://doi.org/10.1016/S0925-8574(00)00119-1
  34. Park, J.-I. and K.-S. Lee, 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bul., 54: 1238−1248 https://doi.org/10.1016/j.marpolbul.2007.03.020
  35. Parsons, T.R., Y. Mait and C.M. Lalli, 1985. A manual of chemical and biological methods for seawater analysis. Pergammon Press, New York, 173pp
  36. Peralta, G., J.L. Perez-Llorens, I. Hernandez and J.J. Vergara, 2002. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. J. Exp. Mar. Biol. Ecol., 269: 9−26 https://doi.org/10.1016/S0022-0981(01)00393-8
  37. Phillips, R.C., 1974. Transplantation of seagrasses with special emphasis on eelgrass, Zostera marina L. Aquaculture, 4: 161−176 https://doi.org/10.1016/0044-8486(74)90031-3
  38. Phillips, R.C. and R.L. Lewis, 1983. Influence of environmental gra-dients on variations in leaf widths and transplant success in North American seagrasses. Mar. Tech. Soc. J., 17: 59−68
  39. Ruiz, J.M. and J. Romero, 2001. Effects of in situ experimental shading on the Mediterrian seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser., 227: 107−120
  40. Seddon, S., 2004. Going with the flow: Facilitating seagrass rehabilitation. Ecol. Manag. Res., 5: 167−176 https://doi.org/10.1111/j.1442-8903.2004.00205.x
  41. Short, F.T., 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot., 27: 41−57 https://doi.org/10.1016/0304-3770(87)90085-4
  42. Short, F.T. and S. Wyllie-Echeverria, 1996. Natural and humaninduced disturbance of seagrasses. Environ. Conserv., 23: 17−27 https://doi.org/10.1017/S0376892900038212
  43. Short, F.T., R.C. Davis, B.S. Kopp, C.A. Short and D.M. Burdick, 2002. Site-selection model for optimal transplantation of eelgrass Zostera marina in the northeastern US. Mar. Ecol. Prog. Ser., 227: 253−267 https://doi.org/10.3354/meps227253
  44. Short, F., T. Carruthers, W. Dennison and M. Waycott, 2007. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol., 350: 3−20 https://doi.org/10.1016/j.jembe.2007.06.012
  45. van Katwijk, M.M., G.H.W. Schmitz, L.S.A.M. Hanssen and C. den Hartog, 1998. Suitablity of Zostera marina populations for transplantation to the Wadden Sea as determines by a mesocosm shading experiment. Aquat. Bot., 60: 283−305 https://doi.org/10.1016/S0304-3770(98)00053-9
  46. Vermaat, J.E. and F.C.A. Verhagen, 1996. Seasonal variation in the intertidal seagrass Zostera noltii Hornem.: coupling demographic and physical patterns. Aquat. Bot., 52: 259−281 https://doi.org/10.1016/0304-3770(95)00510-2
  47. Zieman, J.C., 1974. Methods for the study of growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture, 4: 139−143 https://doi.org/10.1016/0044-8486(74)90029-5
  48. Zimmerman, R.C., J.L. Reguzzoni and R.S. Alberte, 1995. Eelgrass (Zostera marina L.) transplants in San Francisco Bay: Role of light availability on metabolism, growth and survival. Aquat. Bot., 51: 67−86 https://doi.org/10.1016/0304-3770(95)00472-C