DOI QR코드

DOI QR Code

Effects of Relative Swimming Exercise Intensity on mRNA Expression of UCP-1, UCP-3 Brown Adipose Tissue and Blood Insulin, and Glucose in Rat

상대적 수영운동 강도가 흰쥐 갈색지방조직의 UCP-1과 UCP-3 mRNA 발현, 혈중 인슐린 및 혈당에 미치는 효과

  • 윤진환 (한남대학교 생활체육학과) ;
  • 오명진 (한남대학교 생활체육학과) ;
  • 서태범 (한남대학교 생활체육학과) ;
  • 김종오 (한남대학교 생활체육학과) ;
  • 장문녀 (한남대학교 생활체육학과) ;
  • 박성태 (한남대학교 생활체육학과) ;
  • 김영표 (제주대학교 체육학과) ;
  • 유재현 (삼육대학교 사회복지학부)
  • Published : 2009.02.28

Abstract

The purpose of this study was to investigate the UCP-1, UCP-3 mRNA expression in brown adipose tissue with glycometabolism according to intensity and duration of swimming in rat. F344 rat were randomly divided into three groups (n=10 in each group): control (CON), low-intensity swimming (LIS) groups, and high-intensity swimming (HIS) groups. Animals in the LIS group were forced to swim in swimming pool for 30min once a day for 8 consecutive weeks with a light intensity. In the HIS group, the rats repeated fifteen 20-s swimming bouts with a weight equivalent to 10% of body weight for 8weeks, respectively. The present result demonstrated that in LIS group, serum insulin and glucose levels significantly decreased in LIS group compared to CON. Brown adipose tissue UCP-1 and UCP-3mRNA expression was significantly increase in LIS group compared to CON and HIS groups. From those results, it can be suggested that low-intensity swimming may improve glycometablism control by up-regulating UCP-1 and UCP-3mRNA expression.

본 연구에서는 F344계 흰쥐를 대상으로 8주간 저강도 운동군과 고강도 운동군으로 나누어 수영운동을 실시하여, 갈색지방조직 내 UCP-1과 UCP-3mRNA 발현을 관찰하고 혈당 및 인슐린 수준이 어떠한 변화를 나타내는지 알아보았다. 그 결과 저강도 수영을 실시한 그룹이 대조군과 고강도 운동그룹보다 갈색지방조직 내 UCP-1과 UCP-3 mRNA 발현이 증가되는 것을 관찰하였으며, 고강도 수영군에서 대조군 보다 인슐린 수준이 낮게 나타났으나 혈당에서는 유의한차가 나타나지 않았다. 하지만 저강도 수영군에서 대조군보다 혈당 및 인슐린 수준이 유의하게 감소하는 것을 관찰하였다. 이러한 결과는 저강도 수영운동이 갈색지방조직 내 UCP-1과 UCP-3mRNA 발현을 증가시키고, 당대사를 활성화하여 인슐린민감도를 개선시킬 수 있음을 보여주는 결과이다.

Keywords

References

  1. Boss, O., T. Hagen, and B. B. Lowell. 2000. Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabets. 49, 143-156 https://doi.org/10.2337/diabetes.49.2.143
  2. Boss, O., S. Samec, D. Desplanches, M. H. Mayet, J. Seydoux, P. Muzzin, and J. P. Giacobino. 1998. Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat. FASEB J. 12, 335-339
  3. Boss, O., S. Samec, G. A. Paoloni, C. Rossier, A. Dulloo, J. Seydoux, P. Muzzin and J. P. Giacobino. 1997. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408, 39-42. https://doi.org/10.1016/S0014-5793(97)00384-0
  4. Cho, H. S., W. S. Kim, S. Y. Park, and J. B. Kim. 2002. Review: PPARs and UCPs - Two major regulator in Energy homeostasis. Korean Society for Biochemistry and Molecular Biology 22, 256-265
  5. Clapham, J. C., J. R. Arch, H. Chapman, A. Haynes, C. Lister, G. B. Moore, V. Piercy, S. A. Carter, I. Lehner, S. A. Smith, L. J. Beeley, R. J. Godden, N. Herrity, M. Skehel, K. K. Changani, P. D. Hockings, D. G. Reid, S. M. Squires, J. Hatcher, B. Trail, J. Latcham, S. Rastan, A. J. Harper, S. Cadenas, J. A. Buckingham, M. D. Brand, and A. Abuin. 2000. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406, 415-418 https://doi.org/10.1038/35019082
  6. Cortright, R. N., D. Zheng, J. P. Jones, J. D. Fluckey, S. E. DiCarlo, D. Grujic, B. B. Lowell, and G. L. Dohm. 1999. Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation. Am. J. Physiol. 276, 217-221
  7. Daugaard, J. R., J. L. Laustsen, B. S. Hansen, and E. A. Richter. 1999. Insulin action in growth hormone-deficient and age-matched control rats: effect of growth hormone treatment. J. Endocrinol. 160, 127-135 https://doi.org/10.1677/joe.0.1600127
  8. Enerback, S. and J. Kozak. 1997. Mice lacking mitochondria uncoupling protein are cold sensitive but not obese. Nature 387, 90-94 https://doi.org/10.1038/387090a0
  9. Ewart, H. S., R. Somwar, and A. Klip. 1998. Dexamethasone stimulates the expression of GLUT1 and GLUT4 proteins via different signalling pathways in L6 skeletal muscle cells. FEBS Lett. 425, 179-183
  10. Fleury, C., M. Neverova, S. Collins, S. Raimbault, O. Champigny, C. L. Meyrueis, F. Bouillaud, M. F. Seldin, R. S. Surwit, D. Ricquier, and C. H. Warden. 1997. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269-272 https://doi.org/10.1038/ng0497-369
  11. Foellmi, L. A., B. M. Wyse, D. Herron, J. Nedergaard, and R. F. Kletzien. 1996. Induction of uncoupling protein in brown adipose tissue. Synergy between norepinephrine and pioglitazone, an insulin-sensitizing agent. Biochem. Pharmacol. 52, 693-701 https://doi.org/10.1016/0006-2952(96)00345-0
  12. Jeong, I. G. and J. H. Yoon. 2006. Human Performance & Exercise Physiology, pp. 80-115, Daekyung Books, Seoul
  13. Holmes, B. F., E. J. Kurth-Kraczek, and W. W. Winder. 1999. Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J. Appl. Physiol. 87, 1990-1995
  14. Kambiz, M., J. P. David, and J. J. Bernard. 2004. BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am. J. Physiol. Cell Physiol. 287, 22-29 https://doi.org/10.1152/ajpcell.00583.2003
  15. Kraemer, R. R., H. Chu, and V. D. Castracane. 2002. Leptin and exercise. Exp. Biol. Med. 227, 701-708
  16. Lin, B., S. Coughlin, and P. F. Pilch. 1998. Bidirectional regulation of uncoupling protein-3 and GLUT-4 mRNA in skeletal muscle by cold. Am. J. Physiol. 275, 386-391
  17. Mao, W., X. X. Yu, A. Zhong, W. Li, J. Brush, S. W. Sherwood, S. H. Adams, and G. Pan. 1999. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 443, 326-330 https://doi.org/10.1016/S0014-5793(98)01713-X
  18. Megeney,, L. A., M. A. Prasad, M. H. Tan, and A. Bonen. 1994. Expression of the insulin-regulatable transporter GLUT-4 in muscle is influenced by neurogenic factors. Am. J. Physiol. 266, E813-816
  19. Millet, L., H. Vidal, F. Andreelli, D. Larrouy, J. P. Riou, D. Ricquier, M. Laville, and D. Langin. 1997. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J. Clin. Invest. 100, 2665-2670 https://doi.org/10.1172/JCI119811
  20. Mitchell, P. 1979. Keilins respiratory chain concept and its chemiosomotic consequences. Science 1148-1159
  21. Mozo, J., Y. Emre, F. Bouillaud, D. Ricquier, and F. Criscuolo. 2005. Thermoregulation: what role for UCPs in mammals and birds?. Biosci. Rep. 25, 227-249 https://doi.org/10.1007/s10540-005-2887-4
  22. Nagy, T. R., M. L. Blaylock, and W. T. Garvey. 2004. Role of UCP2 and UCP3 in nutrition and obesity. Nutrition 20, 139-144 https://doi.org/10.1016/j.nut.2003.09.024
  23. Nakao, C., T. Ookawara, T. Kizaki, S. O. Ishi, H. Miyazaki, S. Haga, Y. Sato, L. L. Ji, and H. Ohno. 2000. Effects of swimming training on three superoxide dismutase isoenzymes in mouse tissues. J. Appl. Physiol. 88, 649-654
  24. Nakatani, A., D. H. Han, P. A. Hansen, L. A. Nolte, H. H. Host, R. C. Hickner, and J. O. Holloszy. 1997. Effect of endurance exercise training on muscle glycogen supercompensation in rats. J. Appl. Physiol. 82, 711-715
  25. Nicholls, D. G., and R. M. Locke. 1984. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1-64
  26. Oh, K. S., E. Y. Kim, M. Yoon, and C. M. Lee. 2007. Swim training improves leptin receptor deficiency-induced obesity and lipid disorder by activating uncoupling proteins. Exp. Mol. Med. 39, 385-394 https://doi.org/10.1038/emm.2007.43
  27. Ohishi, S., T. Kizaki, K. Toshinai, S. Haga, K. Fukuda, N. Nagata, and H. Ohno. 1996. Swimming training improves brown-adipose-tissue activity in young and old mice. Mech. Ageing Dev. 89, 67-78 https://doi.org/10.1016/0047-6374(96)01727-7
  28. Palou, A., C. Picó, M. L. Bonet, and P. Oliver. 1998. The uncoupling protein, thermogenin. Int. J. Biochem. Cell Biol. 30, 7-11 https://doi.org/10.1016/S1357-2725(97)00065-4
  29. Raile, K., J. Klammt, A. Garten, S. Laue, M. Blṻher, S. Kralisch, N. Kloting, and W. Kiess. 2006. Glucose regulates expression of the nerve growth factor (NGF) receptors TrkA and p75NTR in rat islets and INS-1E $\beta$- cells. Regulatory Peptides 135, 30-38 https://doi.org/10.1016/j.regpep.2006.03.004
  30. Rasmussen, B. B., C. R. Hancock, and W. W. Winder. 1998. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl- CoA carboxylase, and AMP-activated protein kinase. J. Appl. Physiol. 85, 1629-1634
  31. Rippe, C., K. Berger, C. Böiers, D. Ricquier, and C. E. Albertsson. 2000. Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression. Am. J. Physiol. Endocrinol. Metab. 279, 293-300
  32. Rolfe, D. F. S. and G. C. Brown. 1997. Cellular-energy utiliation and molecular-origin of standard metabolic-rate in mammals. Physiol. 77, 731-758
  33. Samec, S., J. Seydoux, and A. G. Dulloo. 1998. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J. 12, 715-724
  34. Sanchis, D., C. Fleury, N. Chomiki, M. Goubern, Q. Huang, M. Neverova, F. Gregoire, J. Easlick, S. Raimbault, C. L. Meyrueis, B. Miroux, S. Collins, M. Seldin, D. Richard, C. Warden, F. Bouillaud, and D. Ricquier. 1998. BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J. Biol. Chem. 273, 34611-34615 https://doi.org/10.1074/jbc.273.51.34611
  35. Schrauwen, P., W. H. Saris, and M. K. Hesselink. 2001. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix FASEB J. 15, 2497-2502 https://doi.org/10.1096/fj.01-0400hyp
  36. Terada, S., I. Tabata, and M. Higuchi. 2004. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. J. Physiol. 54, 47-52
  37. Terada, S., T. Yokozeki, K. Kawanaka, K. Ogawa, M. Higuchi, O. Ezaki, and I. Tabata. 2001. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J. Appl. Physiol. 90, 2019-2024
  38. Tsuboyama-Kasaoka, N., N. Tsunoda, K. Maruyama, M. Takahashi, H. Kim, S. Ikemoto, and O. Ezaki. 1998. Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. Biochem. Biophys. Res. Commun. 247, 498-503 https://doi.org/10.1006/bbrc.1998.8818
  39. Tuuri, G., M. Loftin, and J. Oescher. 2002. Association of swim distance and age with body composition in adult female swimmers. Med. Sci. Sports Exerc. 34, 2110-2114 https://doi.org/10.1097/00005768-200212000-00037
  40. Vidal, H., D. Langin, F. Andreelli, L. Millet, D. Larrouy, and M. Laville. 1999. Lack of skeletal muscle uncoupling protein 2 and 3 mRNA induction during fasting in type-2 diabetic subjects. Am. J. Physiol. 277, 830-837
  41. Vidal, P. A., G. Solanes, D. Grujic, J. S. Flier, and B. B. Lowell. 1997. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Commun. 235, 79-82 https://doi.org/10.1006/bbrc.1997.6740
  42. Weigle, D. S., L. E. Selfridge, M. W. Schwartz, R. J. Seeley, D. E. Cummings, P. J. Havel, J. L. Kuijper, and H. B. Rio. 1998. Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes 47, 298-302 https://doi.org/10.2337/diabetes.47.2.298
  43. Zhou, M., B. Z. Lin, S. Coughlin, G. Vallega, and P. F. Pilch. 2000. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am. J. Physiol. Endocrinol. Metab. 279, 622-629