DOI QR코드

DOI QR Code

Physicochemical Composition of Broccoli Sprouts

브로콜리 싹의 이화학적 성분

  • Lee, Jae-Joon (Department of Food and Nutrition, Chosun University) ;
  • Lee, Yu-Mi (Department of Food and Nutrition, Chosun University) ;
  • Kim, Ah-Ra (Department of Food and Nutrition, Chosun University) ;
  • Lee, Myung-Yul (Department of Food and Nutrition, Chosun University)
  • 이재준 (조선대학교 식품영양학과) ;
  • 이유미 (조선대학교 식품영양학과) ;
  • 김아라 (조선대학교 식품영양학과) ;
  • 이명렬 (조선대학교 식품영양학과)
  • Published : 2009.02.28

Abstract

This study was conducted to investigate the major chemical components of dried broccoli (Brassica oleracea var. italica Plenck) sprouts. The proximate compositions of broccoli sprouts as dry matter basis were 2.04% of moisture content, 22.04% of crude protein, 12.80% of crude fat, 6.25% of crude ash, and 56.87% of carbohydrate, respectively. The major free sugars were identified as ribose, glucose and fructose. Analysing total amino acids, 15 kinds of components isolated from broccoli sprouts. The essential amino acid contained in broccoli sprouts accounted for 45.62% of total amino acid, while the non-essential amino acid accounted for 54.38%. Fatty acids were 3.19% of saturated fatty acids, 14.42% of monounsaturated fatty acids and 82.39% of polyunsaturated fatty acids. Cis-11,14-eicosatrienoic acid, linoleic acid and oleic acid were the major fatty acids among 14 fatty acids detected in dried broccoli sprouts. Lactic acid was the major organic acids. The contents of vitamin A and vitamin E were 0.06 mg% and 0.82 mg%, respectively. The mineral contents of dried broccoli sprouts were greater in order of Cu

브로콜리 싹의 생리활성 기능과 이용 가능성에 관한 연구의 일환으로 브로콜리 싹의 일반성분 및 영양성분을 측정한 결과는 다음과 같다. 일반성분은 건물(dry basis)을 기준으로 수분 함량은 2.04%, 조단백질 22.04%, 조지방 12.80%, 조회분 6.25% 및 탄수화물 56.87%를 함유하였다. 구성당은 ribose가 가장 많았고 다음으로 fructose, glucose 순으로 총 3종이 검출 되었다. 아미노산은 lysine 함량이 691.09 mg%로 가장 많이 함유되었고, 다음으로 leucine, aspartic acid, glutamic acid, arginine, phenylalanine, valine 순으로 검출 되었다. 브로콜리 싹의 구성 지방산 중 포화지방산 함량은 palmitic acid가 가장 높았으며 arachidic acid, lignoceric acid, behenic acid 순으로 나타났다. 불포화지방산은 cis-11,14-eicosatrienoic acid가 가장 높았으며 linolenic acid, linoleic acid, oleic acid 순으로 나타났다. 유기산은 총 3종의 유기산이 검출되었으며, 이 중 lactic acid가 가장 많았고, 다음으로 malic acid, citric acid 순으로 검출되었다. 비타민 A와 E의 함량은 각각 0.06 mg%와 0.82 mg%이었다. 무기질은 총 8종의 무기질 성분이 검출되었으며, 이 중 K 함량이 가장 많았으며, 다음으로 Mg, Na, Fe 순이었고 Zn, Mn, Cu의 함량은 미량이 었다. 이상의 결과 브로콜리 싹은 필수아미노산 및 필수지방산을 비롯한 항산화 비타민과 무기질을 다량 함유하고 있어 브로콜리 싹의 식품 재료로의 이용화가치가 한층 더 높아질 것으로 기대되어지며, 브로콜리 싹 분말을 이용한 다양한 조리법의 개발과 더불어 가공식품 및 기능성 식품으로의 제품 개발이 필요하다.

Keywords

References

  1. A.O.A.C. 1995. Official methods of analysis. 16th eds., Association of Official Analytical Chemists. Washington, D.C.
  2. Brooks, J. D., V. G. Paton, and G. Vidanes. 2001. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev. 10, 949-954 https://doi.org/10.1158/0008-5472.CAN-06-3462
  3. El-Adawy, T. A. 2002. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Food for Human Nutr. 57, 83-97 https://doi.org/10.1023/A:1013189620528
  4. Eliott, M. Jr. 1996. Biological properties of plant flavonoids: An overview. J. Pharmacognosy 34, 344-348
  5. Fahey, J. W., X. Haristoy, P. M. Dolan, T. W. Kensler, I. Scholtus, K. K. Stephenson, P. Talaly, and A Lozniewski. 2002. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[$\alpha$]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA 99, 7610-7615 https://doi.org/10.1073/pnas.112203099
  6. Gancedo, M. and B. S. Luh. 1986. HPLC analysis of organic acid in Waters. pp. 41-46. PICO. TAG system, Young-in Scientific Co. Ltd., Seoul
  7. Gerhäuser, C., M. You, J. Liu, R. M. Moriarty, M. Hawthorne, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. 1997. Cancer chemopreventive potential of sulforamate, a novel analogue of sulforaphane that induces phase 2 drug-metabolizing enzymes. Cancer Res. 57, 272-278
  8. Goldberg, I. 1994. Functional Food. pp. 3-550. Chapman & Hall press. New York
  9. Gopalan, C., B. V. Rama Sastri, and S. C. Balasubramanian. 2004. Nutritive values of indian foods. National Institute of Nutrition. Indian Council of Medical Research. Hyderabad. Indian
  10. Han, J. H., H. K. Moon, J. K. Kim, J. Y. Kim, and W. W. Kang. 2003. Changes in chemical composition of radish bud (Raphaus sativus L.) during growth stage. Korean J. Soc. Food Cookery Sci. 19, 596-602
  11. Koea Food and Drug Association. 2005. Food standards codex. pp. 367-368. pp. 383-385. Korean Foods Industry Assocoatoin. Seoul. Korea
  12. Khalil, A. W., A. Zeb, F. Mahmmod, S. Tariq, A. B.Khattak, and H. Shah. 2007. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT. 40, 937-945
  13. Kim, D. J., J. M. Kim, and S. S. Hong. 2004. The composition of dietary fiber on brassica vegetables. J. Korean Soc. Food Sci. Nutr. 33, 700-704 https://doi.org/10.3746/jkfn.2004.33.4.700
  14. Kim, I. S., S. H. Han, and K. W. Han. 1997. Study on the chemical change of amino acid and vitamin of rapeseed during germination. J. Korean Soc. Food Sci. Nutr. 26, 1058-1062
  15. Kim, I. S., T. B. Kwon, and S. K. Oh. 1988. Study on the chemical change of general composition, fatty acids and minerals of rapeseed during germination. Korean J. Food Sci. Technol. 20, 188-193
  16. Kim, I. S., T. B. Kwon, and S. K. Oh. 1988. Study on the composition change of free sugars and glucosinolates of rapeseed during germination. Korean J. Food Sci. Technol. 20, 194-199.
  17. Kim, M. R., J. H. Kim, D. S. Wi, J. H. Na, and D. E. Sok. 1999. Volatile sulfur compounds, proximate components, minerals, vitamin C content and sensory characteristics of the juices of kale and broccoli leaves. J Korean Soc. Food Sci. Nutr. 28, 1201-1207
  18. Kim, M. R., K. J. Lee, J. H. Kim, and D. E. Sok. 1997. Determination of sulforaphane in cruciferous vegetable by SIM. Korean J. Food Sci. Technol. 29, 882-887 https://doi.org/10.1016/S0963-9969(98)00101-X
  19. Kim, S. J., I. S. M. Zaidul, T. Maeda, T. Suzuki, N. Hashimoto, S. Tagigawa, T Noda, C. Matsuura-Endo, and H. Yamauchi. 2007. A time-course study of flavonoids in the sprouts of tatary (Fagopyrum tataricum Gaertn.) buckwheats. Sci. Horticulturae 115, 13-18 https://doi.org/10.1016/j.scienta.2007.07.018
  20. Kuo, T. H. and J. F. Van Middlesworth. 1988. Content of raffinose and oligosaccharides and sucrose in various plants. J. Agric. Food Chem. 36, 29-32
  21. Lee, E. H. and C. J. Kim. 2008. Nutritional changes of buckwheat during germination. Korean J. Food Culture 23, 121-129
  22. Mongrau, R. and R. Brassard. 1990. Determination of insoluble, soluble, and total dietary fiber. Collaborative study of a rapid gravimetric method. Cereal Foods World 35, 319-325
  23. Pszczola, D. E. 1993. Designer food. Food Technol. 47, 92-101
  24. Sadaki, O. 1996. The development of functional foods and materials. Bioindustry 13, 44-50
  25. Sok, D. E., J. H. Kim, and M. R. Kim. 2003. Isolation and identification of bioactive organosulfur phytochemicals from solvent extract of broccoli. J. Korean Soc. Food Sci. Nutr. 32, 315-319 https://doi.org/10.3746/jkfn.2003.32.3.315
  26. Song, M. R. 2001. Volatile flavor components of cultivated radish (Raphanus sativus L.) sprout. Korean J. Food Nutr. 14, 20-27
  27. Sattar, A., A. Shah, and A. Zeb. 1995. Biosynthesis of ascorbic acid in germinating rapeseed cultivars. Plant Food for Human Nutr. 47, 63-70 https://doi.org/10.1007/BF01088168
  28. Stauffer, J. Q., M. H. Humphreys and C. J. Weir. 1973. Acquired hyperoxaluria with regional enteritis after ileal resection. Role of dietary oxalate. Ann. Intern. Med. 79, 383-391 https://doi.org/10.1016/0002-9343(78)90576-4
  29. Vanderstoep, J. 1981. Effect of the nutritive value of legumes. Food Technol. 35, 83-91
  30. Waters Associates. 1990. Analysis of amino acid in waters. pp. 41-46. PICO. TAG system. Young-in Scientific Co., Ltd., Korea
  31. Wungaarden, D. V. 1967. Modified rapid preparation fatty acid esters from liquid for gas chromatographic analysis. Anal. Chem. 39, 848-850 https://doi.org/10.1021/ac60251a031
  32. Zhang, Y., P. Talalay, C. G. Cho, and G. H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA 89, 2399-2403 https://doi.org/10.1073/pnas.89.6.2399

Cited by

  1. Physicochemical and Antioxidant Properties of Broccoli Sprouts Cultivated in the Plant Factory System vol.28, pp.1, 2013, https://doi.org/10.7318/KJFC/2013.28.1.057
  2. Physico-Chemical Properties of Broccoli Sprouts Cultivated in a Plant Factory System with Different Lighting Conditions vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1757
  3. Antioxidant Activity of Solvent Fraction from Broccoli Sprouts Cultivated at the Plant Factory System vol.28, pp.1, 2015, https://doi.org/10.9799/ksfan.2015.28.1.001
  4. Nutrient Composition and Antioxidative Effects of Young Barley Leaf vol.27, pp.4, 2016, https://doi.org/10.7856/kjcls.2016.27.4.851
  5. Physicochemical Characteristics and Antioxidant Effects of Red Mustard (Brassica juncea L.) Leaf Using Different Drying Methods vol.28, pp.4, 2017, https://doi.org/10.7856/kjcls.2017.28.4.515