분할방식에 의한 N-설계 콜센터의 근사 성능분석

Approximate Performance Analysis of an N-design Call Center by the Decomposition Method

  • 박철근 (선문대학교 정보통신공학부) ;
  • 성수학 (배재대학교 전산수학콘텐츠학과) ;
  • 정해 (금오공과대학교 전자공학부)
  • 발행 : 2009.01.30

초록

콜센터는 회사와 고객들을 연결하는 주요 접속점이 되고 있다. 최근 계속해서 진보하는 통신 기술로 인해 콜센터의 수나 규모도 극적으로 성장하고 있다. 총 운영비의 많은 부분을 차지하는 인건비를 미루어 볼 때 효율적인 상담원 배치 계획은 콜센터의 경제적이고 성공적인 경영을 좌우한다. 그러므로 상담원의 수를 효과적으로 결정하는 것이 무엇보다 중요하다. 이러한 의미에서 콜센터 운영 및 관리는 큐잉 이론을 이용하는 수리적 최적화 문제로 모델링 할 수 있다. 본 논문에서는 대기 중 중도포기를 하는 두 종류의 고객을 가지며 두 대기 큐들의 용량이 유한인 N-설계 콜센터의 근사적 분석을 상태분할 방법을 이용해 다루기로 한다. 콜센터의 성능 측도에 대한 시스템 파라미터들의 영향을 알아보기 위해 수치계산 예를 보여준다.

Call centers have become the prevalent contact points between companies and their customers. By virtue of recent advances in communication technology, the number and size of call centers have grown dramatically. As a large portion of the operating costs are related to the labor costs, efficient design and workforce staffing are crucial for the economic success of call centers. Therefore it is very important to determine the adequate number of agents. In this context, the workforce staffing level can be modeled as mathematical optimization problem using queueing theory. In this paper, we deal with an approximate analysis of an N-design call center with two finite queues and two types of reneging customers by using the state decomposition method. We also represent some numerical examples and show the impact of the system parameters on the performance measures of the call center.

키워드

참고문헌

  1. A. Mandelbaum and S. Zeltyn, "Service Engineering in Action: The Palm/ Erlang-A Queue, with Applications to Call Centers," Teaching note to Service Engineering course, Technion-Israel Institute of Technology, 2005.
  2. S. Borst, A. Mandelbaum, M. and I. Reiman, "Dimensioning Large Call Centers," Operations Research, Vol.52, No.1, pp, 17-34, 2004. https://doi.org/10.1287/opre.1030.0081
  3. R. Stolletz and S. Helber, "Performance analysis of an inbound call center with skills-based routing," OR Spectrum, Vol.26, pp. 331- 352, 2004. https://doi.org/10.1007/s00291-004-0161-y
  4. M. Shimkin, A. and Mandelbaum, "Rational Abandonment from Tele-Queues: Nonlinear Waiting Costs with Heterogeneous Preferences," Queueing Systems, Vol.47, pp. 117-146, 2004. https://doi.org/10.1023/B:QUES.0000032804.57988.f3
  5. A. Mandelbaum and S. Zeltyn, "The impact of customer's patience on delay and abandon ment: some empirically-driven experiments with the MIM/n+G queue," OR Spectrum, Vol.26, pp. 377-411, 2004. https://doi.org/10.1007/s00291-004-0164-8
  6. N. Gans, G. Koole and A. Mandelbaum, "Commissioned Paper, Telephone Call Centers: Tutorial, Review, and Research Prospect," Manufacturing & Science Operations Management, Vol.5, No.2, pp. 79-141, 2003. https://doi.org/10.1287/msom.5.2.79.16071
  7. R. A. Shumsky, "Appoximation and analysis of a call center with flexible and specialized servers," OR Spectrum, Vol.26, pp. 307-330, 2004. https://doi.org/10.1007/s00291-004-0163-9
  8. S. Helber and K.-H. Waldmann, Call Center Management, Vol.26, OR Spectrum, Springer-Verlag, 2004.
  9. D. Gross and C. H. Harris, Fundamentals of Queueing Theory, John Wiley & Sons, Inc. 1985.
  10. A. Kukzura, "The interrupted poisson process as an overflow process," Bell System Technical Journal, Vol.52, No,3, pp. 437-448, 1973. https://doi.org/10.1002/j.1538-7305.1973.tb01971.x
  11. R. O. Onvural, Asychronous Transfer Mode Networks: Performance Issues, Second edition, Artech House, 1995.
  12. H. Heffes and D. M. Lucantony, "A Markov modulated characterization of packetized voice, data traffic and related statistical multiplexer performance," IEEE J. Selected Areas Comm., Vol.4, No.6, pp. 856-868, 1986. https://doi.org/10.1109/JSAC.1986.1146393
  13. K. S. Meier-Hellstem, "The Analysis of a Queue Arising in Overflow Model," IEEE Trans. on Comm., Vol.37, pp. 367-372, 1989. https://doi.org/10.1109/26.20117
  14. W. Stadje, "The busy periods of some queueing systems," Stochastic processes and their Applications, Vol.55, pp. 159-167, 1995. https://doi.org/10.1016/0304-4149(94)00032-O
  15. H. Tagaki, Queueing Analysis, Vol. 2: Finite Systems, IBM Japan, Ltd., North-Holland, 1993.