REMARKS ON INTERVAL-VALUED FUZZY MINIMAL PRECONTINUOUS MAPPINGS AND INTERVAL-VALUED FUZZY MINIMAL PREOPEN MAPPINGS

  • Min, Won Keun (Department of Mathematics Kangwon National University) ;
  • Kim, Myeong Hwan (Department of Mathematics Kangwon National University)
  • Received : 2009.05.19
  • Published : 2009.06.30

Abstract

In [5], we introduced the concepts of IVF m-preopen sets and IVF m-precontinuous mappings on interval-valued fuzzy minimal spaces. In this paper, we introduce the concept of IVF m-preopen mapping and investigate characterizations for IVF mprecontinuous mappings and IVF m-preopen mappings.

Keywords

References

  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and System, 20(1986), no. 1, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. M. Alimohammady and M. Roohi, Fuzzy minimal structure and fuzzy minimal vector spaces, Chaos,Solutions and Fractals, 27 (2006), 599-605. https://doi.org/10.1016/j.chaos.2005.04.049
  3. M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21, (1987), 1-17. https://doi.org/10.1016/0165-0114(87)90148-5
  4. W. K. Min, Interval-valued fuzzy minimal structures and interval-valued fuzzy minimal spaces, International Journal of Fuzzy Logic and Intelligent Systems, 8(2008), no. 3, 202-206. https://doi.org/10.5391/IJFIS.2008.8.3.202
  5. W. K. Min, M. H. KIM and J. I. KIM, Interval-valued fuzzy m-semiopen sets and interval-valued fuzzy m-preopen sets on interval-valued fuzzy minimal spaces, Honam Mathematical Journal, 31(2009), no. 1, 31-43. https://doi.org/10.5831/HMJ.2009.31.1.031
  6. T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets , Indian J. Pure Appl. Math., 30(1999), no. 1, 23-38.
  7. L. A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X