DOI QR코드

DOI QR Code

음식물류폐기물 활용 퇴비의 장기시용이 논 농업환경에 미치는 영향

The effect of continuous application of the food waste composts on the paddy field environment

  • 권순익 (국립농업과학원 농업환경부) ;
  • 소규호 (국립농업과학원 농업환경부) ;
  • 홍승길 (국립농업과학원 농업환경부) ;
  • 김건엽 (국립농업과학원 농업환경부) ;
  • 이정택 (국립농업과학원 농업환경부) ;
  • 성기석 (국립농업과학원 농업환경부) ;
  • 김권래 (국립농업과학원 농업환경부) ;
  • 이덕배 (국립농업과학원 농업환경부) ;
  • 정광용 (국립농업과학원 농업환경부)
  • Kwon, Soon-Ik (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • So, Kyu-Ho (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Hong, Seung-Gil (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Kim, Gun-Yeob (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Lee, Jeong-Taek (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Seong, Ki-Seog (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Kim, Kwon-Rae (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Lee, Deog-Bae (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Jung, Kwang-Yong (Department of Agricultural Environment, National Academy of Agricultural Science)
  • 투고 : 2009.09.01
  • 심사 : 2009.09.27
  • 발행 : 2009.09.30

초록

본 연구는 음식물류폐기물을 활용한 퇴비의 안전한 농업적 활용을 위하여, 음식물류폐기물 활용 퇴비 등을 논에 장기간 시용하고 벼를 재배하면서 벼 생육에 미치는 영향 및 토양환경 변화를 조사하였다. 시험에 사용된 재료는 질소, 인산, 칼리의 함량이 각각 $24g\;kg^{-1}$,$8g\;kg^{-1}$, $10.4g\;kg^{-1}$인 돈분퇴비와 질소, 인산, 칼리의 함량이 각각 $20g\;kg^{-1}$, $20.1g\;kg^{-1}$,$6.5g\;kg^{-1}$인 음식물류폐기물 활용 퇴비로써 $2{\times}2{\times}2m$ 크기의 라이시미터에 화학비료의 질소 시용량과 동일하게 시용한 후 추정벼를 재배 실험하였다. 음식물류폐기물 활용 퇴비를 시용한 시험구의 벼 생육은 무비구 보다는 양호하였으나 화학비료구에 비해서는 대등하거나 수량이 감소하였다. 시험 후 토양의 성분 함량은 퇴비의 시용에 의해 유기물, 질소 및 인산의 함량이 증가하였으며, 특히 음식물류폐기물 활용 퇴비의 시용은 토양의 통기성을 크게 하였다. 퇴비의 시용에 따른 논토양 수질을 조사한 결과 표면수, 침투수, 지하수에서 화학비료구 또는 무비구에 비해 영향이 크지 않은 것으로 나타났다.

The long-term effects and the soil environmental changes were examined to ensure the safety of food waste compost in agricultural use. Based on conventional nitrogen application rate of chemical fertilizer, Pig manure compost with $24g\;N\;kg^{-1}$, $8g\;P_2O_5\;kg^{-1}$, and $10.4g\;K_2O\;kg^{-1}$ and food waste compost with $20g\;N\;kg^{-1}$, $20.1g\;P_2O_5\;kg^{-1}$, and $6.5g\;K_2O\;kg^{-1}$ were applied to the paddy soil in $2{\times}2{\times}2m$ lysimeter in which paddy rice (Oryza sativa L. var Chucheong) were grown. The rice grown where food waste compost applied showed better growth responses than control, whereas less yield rate than chemical fertilizer applied. The contents of organic matter, nitrogen, and phosphorus after experiment were increased with compost applied. In addition, it improved soil aeration by the application of food waste compost, while little difference was observed in the quality of surface, infiltrated, and ground water compared to chemical fertilizer applied or control.

키워드

참고문헌

  1. 성기석, 소규호, 임동규, 서명철, 서장선, “음식물쓰레기 퇴비 시용이 토양환경에 미치는 영향”, 농업과학기술원 농업환경분야 연구보고서, pp. 75-105(2004).
  2. 소규호, 서명철, 성기석, 홍승길, “Environmental Impacts of Food Waste Compost Application on Paddy Soil”, Korean J. of Soil and Fertilizer, 40(1), pp. 85-94 (2007).
  3. Lee, S. E., Ahn, H. J., Youn, S. K., Kim, S. M., and Jung, K. Y., “Application effect of food waste compost abundant in NaCl on the growth and cationic balance of rice plant on paddy soil”, Korean J. Soil Sci. & Fert., 33(2), pp. 100-108(2000).
  4. Lee, S. E., “Sodicity difference between paddy and upland soil as affected by food waste compost application”, Korean J. Soil Sci. & Fert., 33(2), pp. 92-99 (2000).
  5. 농촌진흥청, “농사시험연구조사기준”, (1995).
  6. 농업과학기술원, “토양 및 식물체 분석법”, (2000).
  7. Summer, M. E., and Miller, W. P., “Cation exchange capacity and exchangeable coefficients”, pp. 1201-1230. In D. L. Sparks et al.(ed). Method of soil analysis. Part 3. Chemical methods. SSSA Book Ser. 5, SSSA and ASA. Madison. WI. (1996).
  8. SAS, “Enterprise Guide 3.0”, SAS Institute Inc. (2004).
  9. Bernstein, L.,“Effects of salinity and sodicity on plant growth”, Ann. Phytopathol, 13, pp. 295-312(1975). https://doi.org/10.1146/annurev.py.13.090175.001455
  10. Bernstein, L. and Hayward, H. E., “Physiology of salt tolerance”, Ann. Rev. Plant Physiol., 9, pp.25-46 (1958). https://doi.org/10.1146/annurev.pp.09.060158.000325
  11. Giusquiani, P. L., Pagliai, M., Gigliotti, G., Businelli, D., and Benetti, A., “Urban waste compost : effects on physical, chemical and biochemical soil properties”, J. Eviron. Qual., 24, pp. 175-182 (1995).
  12. Greenway, H., and Munns, R., “Mechanisms of salt tolerance in monhalophytes”, Ann. Rev. Plant Physiol., 31, pp. 149-190 (1980). https://doi.org/10.1146/annurev.pp.31.060180.001053
  13. Hayward, H. E., and Wadleigh, C. H., “Plant growth on saline and alkali soils”, Adv. in Agron., 1, pp. 1-38 (1949). https://doi.org/10.1016/S0065-2113(08)60745-2
  14. Shannon, M.,“Adaptation of plants to salinity”, Adv. in Agron., 60, pp. 75-120 (1997). https://doi.org/10.1016/S0065-2113(08)60601-X
  15. 배재근, 주요섭, 박정수, “음식물쓰레기 염분(NaCl)농도가 퇴비화 및 식물성장에 미치는 영향”, 유기성자원학회지, 10(4), pp. 103-111(2002).
  16. Anikwe, M. A. N., and Nwobodo, K. C. A.,“Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria”, Biore. Tech., 83, pp. 241-250 (2002). https://doi.org/10.1016/S0960-8524(01)00154-7
  17. Chang, A. C., Page, A. L., and Warneke, J. E., “Soil conditioning effects of municipal sludge compost”, J. Environ. Engin., 109, pp. 574-583(1983). https://doi.org/10.1061/(ASCE)0733-9372(1983)109:3(574)