Gf-SPACES FOR MAPS AND POSTNIKOV SYSTEMS

  • Yoon, Yeon Soo (Department of Mathematics Education, Hannam University)
  • Received : 2009.11.03
  • Accepted : 2009.11.24
  • Published : 2009.12.30

Abstract

For a map f : A $\rightarrow$ X, we define and study a concept of $G^f$-space for a map, which is a generalized one of a G-space. Any G-space is a $G^f$-space, but the converse does not hold. In fact, $S^2$ is a $G^{\eta}$-space, but not G-space. We show that X is a $G^f$-space if and only if $G_n$(A, f,X) = $\pi_n(X)$ for all n. It is clear that any $H^f$-space is a $G^f$-space and any $G^f$-space is a $W^f$-space. We can also obtain some results about $G^f$-spaces in Postnikov systems for spaces, which are generalization of Haslam's results about G-spaces.

Keywords

Acknowledgement

Supported by : Hannam University

References

  1. J. Aguade, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938-955. https://doi.org/10.4153/CJM-1987-047-9
  2. B. Eckmann and P. Hilton, Decomposition homologique d'un polyedre simplement connexe, Canad. J. Math. 248 (1959), 2054-2558.
  3. D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856. https://doi.org/10.2307/2373248
  4. D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. https://doi.org/10.2307/2373349
  5. H. B. Haslam, G-spaces and H-spaces, Ph. D. Thesis, Univ. of California, Irvine, 1969.
  6. P. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Pub., 1965.
  7. D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.
  8. D. W. Kahn, A note on H-spaces and Postnikov systems of spheres, Proc. Amer. Math. Soc. 15 (1964), 300-307.
  9. K. L. Lim, On cyclic maps, J. Austral. Math. Soc.,(Series A) 32 (1982), 349-357. https://doi.org/10.1017/S1446788700024903
  10. K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71. https://doi.org/10.4153/CMB-1987-009-1
  11. R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, New York, 1968.
  12. N. Oda, The homotopy of the axes of pairings , Canad. J. Math. 17 (1990), 856-868.
  13. M. Postnikov, On the homotopy type of polyhedra, Dokl. Akad. Nauk. SSSR 76 (1951), no 6, 789-791.
  14. J. Siegel, G-spaces, H-spaces and W-spaces, Pacific J. Math. 31 (1969), 209-214. https://doi.org/10.2140/pjm.1969.31.209
  15. M. H. Woo and J. R. Kim, Certain subgroups of homotopy groups, J. Korean Math. Soc. 21 (1984), no. 2, 109-120.
  16. M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc., (Series A) 59 (1995), 193-203. https://doi.org/10.1017/S1446788700038593
  17. Y. S. Yoon, Lifting Gottlieb sets and duality, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1315-1321. https://doi.org/10.1090/S0002-9939-1993-1184089-7
  18. Y. S. Yoon, The generalized dual Gottlieb sets, Topology Appl. 109 (2001), 173-181. https://doi.org/10.1016/S0166-8641(99)00150-9
  19. Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms, Sci.Math. Japon. 55 (2002), no. 1, 139-148.
  20. Y. S. Yoon, H$^{f}$-spaces for maps and their duals, J. Korea Soc. Math. Edu. Series B 14 (2007), no. 4, 289-306.
  21. Y. S. Yoon, Lifting T-structures and their duals, J. Chungcheong Math. Soc. 20 (2007), no. 3, 245-259.