재귀원형군과 토러스에서 쌍형 다대다 서로소인 경로 커버

Paired Many-to-Many Disjoint Path Covers in Recursive Circulants and Tori

  • 김유상 (가톨릭대학교 컴퓨터공학과) ;
  • 박정흠 (가톨릭대학교 컴퓨터공학과)
  • 발행 : 2009.02.15

초록

그래프 G의 쌍형 다대다 k-서로소인 경로 커버(쌍형 k-DPC)는 k개의 서로 다른 소스-싱크 쌍을 연결하며 그래프에 있는 모든 정점을 지나는 k개의 서로소인 경로 집합이다. 이 논문에서는 재귀원형군 G($cd^m$,d), $d{\geq}3$과 토러스에서 서로소인 경로 커버를 고려하여, 이분 그래프가 아니고 분지수가 $\delta$인 재귀원형군과 토러스는 고장 요소(정점이나 에지)가 f개 이하일 때 $f+2k{\leq}{\delta}-1$을 만족하는 임의의 f, $k{\geq}1$에 대하여 쌍형 k-DPC를 가짐을 보인다.

A paired many-to-many k-disjoint path cover (paired k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. In this paper, we investigate disjoint path covers in recursive circulants G($cd^m$,d) with $d{\geq}3$ and tori, and show that provided the number of faulty elements (vertices and/or edges) is f or less, every nonbipartite recursive circulant and torus of degree $\delta$ has a paired k-DPC for any f and $k{\geq}1$ with $f+2k{\leq}{\delta}-1$.

키워드

참고문헌

  1. J. A. Bondy and U. S. R Murty, Graph Theory, Springer Verlag, 2007.
  2. D. B. West, Introduction to Graph Theory (2nd edition), Prentice Hall, 2001.
  3. J.-H. Par, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements," IEEE Trans. Parallel and Distributed Systems 17(3), pp. 227-240, Mar. 2006. https://doi.org/10.1109/TPDS.2006.37
  4. J. -H. Park, "One-to-one dishoint path covers in recursive circulants," Journal of KISS 30(12), pp. 691-698, 2003.
  5. C.-H. Tsai, J.J.M. Tan, and L.-H.Hsu, "The super-connected property of recursive circulant gaphs," Inform. Proc. Lett. 91(6), pp. 293-298, 2004. https://doi.org/10.1016/j.ipl.2004.05.013
  6. C. -H. Chang, C.-K. Lin, H.-M. Huang, and L. -H. Hsu, "The super laceability of the hypercubes," Inform. Proc. Lett. 92(1), pp. 15-21, 2004. https://doi.org/10.1016/j.ipl.2004.06.006
  7. J.-H. Park, "One-to-many disjoint path covers in a graph with faulty elements," in Proc. of the International Computing and Combinatorice Conference COCOON 2004, pp. 392-401, Aug. 2004.
  8. J.-H. Park, "Unpaired many-to-many disjoint path covers in hypercube-like interconnection networks," Journal of KISS 33(10), pp. 789-796, 2006
  9. R. Caha and V. Koubek, "Spanning multi-paths in hypercubes," Discrete Mathematics 307(16), pp. 2053-2066, 2007. https://doi.org/10.1016/j.disc.2005.12.050
  10. P.-L. Lai and H.-C. Hsu, "The two-equal-disjoint path cover problem of matching composition network," in Proc. of the IEEE International Parallel & Distributed Processing Symposium IPDPS 2005, Apr. 2005.
  11. J.-H. Park and H.-C. Kim, and H.-S. Lim, "Faulthamiltonicity of hypercube-like interconnection networks," in Proc. of the IEEE International Parallel & Distrivuted Processing Symposium IPDPS 2005, Apr. 2005. https://doi.org/10.1109/IPDPS.2005.223
  12. J.-H. Park and K. Y. Chwa, "Recursive circulants and their embeddings among hypercubes," Theoretical Computer Science 244(1-2), pp. , Aug. 2000. https://doi.org/10.1016/S0304-3975(00)00176-6
  13. C.-H. Tasi, J.J.M. Tan, Y.-C. Chuang, L.-H. Hsu, "Fault-free cycles and links in faulty recursive circulant graphs," in Proc. of the Workshop on Algorithms and Theory of Computation ICS 2000, pp. 74-77, 2000.
  14. H.-C. Kim and J.-H. Prak, "Fault hamiltonicity of wo-dimensinal torus networks," Workshop on Algorithms and Computation WAAC'00, Tokyo, Japan, pp. 110-117, July 2000.