References
- T. G. Dietterich, "Ensemble method in machine learning," LNCS, Vol.1857, pp. 1-15, 2000
- E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithm: bagging, boost-ing, and variants,” Machine Learning, Vol.36, No.1-2, pp. 105-142, 1999 https://doi.org/10.1023/A:1007515423169
- T. G. Dietterich, “An experimental comparison of three methods for constructing ensembles of deci-sion trees: bagging, boosting, and randomization,” Machine Learning, Vol.40, No.2, pp. 139-157, 2000 https://doi.org/10.1023/A:1007607513941
- D. Optiz and R. Maclin, “Popular ensemble methods: an empirical study,” Journal of AIR, Vol.11, pp. 169-198, 1999
- L. Breiman, “Bagging predictors,” Machine Learn-ing, Vol.24, No.2, pp. 123-140, 1996 https://doi.org/10.1023/A:1018054314350
- Y. Freund and O. Schapire, "Experiments with a new boosting algorithm," Proc. 13th International Conf. on Machine Learning, pp. 148-156. 1996
- L. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans. PAMI, Vol.12, pp. 993-1001, 1990 https://doi.org/10.1109/34.58871
- R. O. Duda, P. E. Hart and D. G. Stork, 2nd ed., Pattern Classification, Wiley-interscience, 2000
- G. Valentini, M. Muselli and F. Ruffino, “Bagged Ensembles of SVMs for Gene Expression Data Ana-lysis,” The IEEE-INNS-ENNS International Joint Conference on Neural Networks, pp. 1844-1849, 2003 https://doi.org/10.1109/IJCNN.2003.1223688
- I. Buciu, C. Kotropoulos and I. Pitas, “Combining support vector machines for accuracy face detec-tion," Proc. ICIP, 99. 1054-1057, 2001
- T. Evgeniou, L. Perez-Breva, M. Pontil and T. Poggio, "Bound on the generalization performance of kernel machine ensembles," Proc. ICML, pp. 271-278, 2000
- J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993
- J. Quinlan, "Induction of Decision Tree," Machine Learning, Vol.1, No.1, pp. 81-106, 1986 https://doi.org/10.1023/A:1022643204877
- J. Platt, "Fast training of support vector machines using sequential minimal optimization,” in Advances in Kernel Methods, ed. Scholkopf. B., Burges, C., Smola, A., The MIT Press, pp. 185-208, 1999
- I. Witten and E. Frank, 2nd ed., Data Mining: Practical Machine Learning Tools and Techniques with Java Implementation, Morgan Kaufmann, San Francisco, 2005
- C. Blacke and C. Merz, UCI Repository of Machine Learning Database, http://www.ics.uc.ed/~mlearn/LRepository.html, 1998
- Y. Freund and R. Schapire, “A decision theoretic generalization of online learning and an application to boosting,” Journal of CSC, Vol.55, pp. 119-139, 1997 https://doi.org/10.1006/jcss.1997.1504