A Study on a Mobile Terminal Platform for a High Speed Mobile Multimedia System

Kwang-Hyun Ro

Abstract This paper presents a L3 mobile terminal platform of the mobile terminal system which is a subsystem of HMm(High-speed Mobile Multimedia) system, which layer 3 control protocols such as RC(Radio Control), SC(Session Control), MC(Mobility Control) and application services such as VOD, FTP, VoIP for a multimedia mobile terminal are implemented on. The hardware platform is based on PXA255 and supports various interfaces and multimedia devices, and under the platform, an embedded Linux generated by the self-maden cross-toolchain, L3 control protocols and application programs were installed. The operation of HMm system under the HMm testbed has shown that this platform successfully supported SIP services, web browsing services, streaming services and etc as well as call processing. It could be the reference of the upcoming Fourth-Generation mobile terminal which the multimedia functionality will be enforced.

Key Words: HMm, Mobile Terminal, Embedded Linux, multimedia mobile

1. 서론

최근 컴퓨터 및 이동통신 기술의 급속한 발전으로 인해 이동통신단말기의 사용자 환경이 기존의 텍스트 위주 에서 벗어나 이미지, 그래픽, 오디오 및 비디오 데이터 등을 제공하는 멀티미디어 사용자 환경으로 변화하고 있다.

우리나라는 CDMA(Code Division Multiple Access) 기 술 기반의 이동통신시스템 연구개발 성공과 서비스 상용화 로 세계적인 보편통신 강국으로 성장하였다. 세계 어느 나라보다도 높은 이동통신 보유율, 초고속 정보통신망을 중심으로 하는 폭발적인 인터넷 서비스, 이동통신망과 인터넷이 결합된 무선인터넷 서비스 활성화는 다른 국가들의 모델이 되고 있으며, 정치, 경제, 사회, 문화 정반에 있어서 누구나 실감할 수 있을 정도로 큰 변화를 일으키고 있다.

이동통신서비스는 음성 서비스와 메시징 서비스 단계에 서 벗어나 페킷 데이터 서비스를 제공하는 수준에 이르렀으며, 이를 위해 IMT-2000 (International Mobile Telecommunication 2000) 인프라로서 CDMA2000 1xEV-DO(1xEvolution-Data Optimized)가 구축되어 가입자들에게 사진과 단문서 비스를 통합한 멀티미디어 메시징 서비스를 비롯하여

본 연구는 2007년도 한성대학교 교내연구비 지원과제임.
1한성대학교 산업시스템공학과 조교수
2교신처: 노광현(khrho@hansung.ac.kr)
취수일 08년 09월 01일 수정일 (1차 08년 12월 10일, 2차 08년 12월 18일, 3차 09년 01월 07일) 개재확정일 09년 01월 16일
2Mbps급의 전송속도로 기본적인 멀티미디어 서비스 시대를 열었으며, 최근에는 WCDMA(Wideband CDMA) 서비스를 통해 화상통신 서비스도 지원하고 있다.

하지만, 3세대 이동통신기술인 IMT-2000 서비스의 기술적 완성도가 미흡하고, 기업가점 상대적으로 낮은 전송속도와 무선자원의 부족, 고가의 이용 요금, 그리고 사용자들의 고속 데이터통신 요구와 무선인터넷 서비스를 능가하는 다양한 이동대용량 서비스들 제공하기에 미흡한 상황들이 현실적으로 나타나고 있다. 이에 따라 수십 Mbps급 이상의 무선 전송속도를 제공하며, Hot Spot 서비스 및 고속 이동성 도 보장하고, 다양한 무선 이동통신망의 응용도 가능할 수 있는 IMT-2000 이후 기술에 대한 필요성이 제기되어 왔다. 최근, 이러한 요구를 만족시키기 위하여 3GPP, 3GPP2, IEEE 등에서 새로운 이동통신기술 표준화를 추진 중이며, ITU-R에서는 4세대 이동통신기술인 IMT-Advanced 표준화 작업에 착수하였다.[1,2,3].

이러한 추세에 따라 국제 경쟁력과 표준화 기술 및 지적 재산권을 결정하고, 초고속 이동/무선통신 멀티미디어 정보화 사회, 유무선서비스를 구축할 핵심기술 개발목표로 한국자산통신회계원에서는 4세대 이동통신기술개발을 두고 초고속 이동대용량(High-speed Mobile Multimedia, 이하 HMM) 시스템 개발과제를 수행하였다.

본 논문에서는 HMM 시스템을 구성하는 서비스시스템 중 이동통신서브시스템(Mobile Terminal Subsystem, 이하 이동통신시스템)의 연구개발 결과를 이동통신알림망(AlarmNet) 중심으로 설명한다. 이동통신알림망은 휴대용 멀티미디어기술인 하드웨어에 HMM에서 정의한 무선자원 관리를 위한 RC(Radio Control), 데이터 전송 제어 및 QoS 제어를 위한 SC(Shortcut Control), 사용자 인증 및 이동성 관리를 위한 MC(Mobility Control)의 L3 프로토콜을 응용 계층 프로토콜 및 다양한 대용량 서비스들을 지원하는 응용 프로그램을 포함한다.

2장에서는 HMM 시스템 구성과 이동통신시스템 구성에 대해 소개하고, 3장에서는 이동통신시스템 구성에 대해 설명하는 이동통신알림망 L3 제어 프로토콜과 응용 서비스 기능을 탑재하는 이동통신알림망 및 모바일 휴대 전화에 대해 구체적으로 설명한다. 4장에서는 HMM 시스템 테스트베드에서의 L3 이동통신알림망의 시험 결과를 설명하며, 5장은 결론이다.

2. HMM 이동통신시스템 구성

HMM 시스템에서의 이동통신과 네트워크의 관계는 그림 1과 같이 정의되며, 핵심망(Core Network)이 Mobile IP를 지원하는 형식으로 구성되었다. 본 논문에서는 HMM 시스템 중 MT(Mobile Terminal)에 해당하는 이동단말시스템 중심으로 설명한다.

![그림 1] HMM 시스템 구성도

HMM 이동단말시스템은 그림 2와 같다. L3 하드웨어 플랫폼에는 제어 평면(Control Plane)과 사용자 평면(User Plane)에 필요한 프로토콜들 중 L3 이상의 프로토콜이 구현되며, PHY/MAC을 포함한 무선 접속 물리계층이 구현되는 L1/L2 플랫폼은 별도로 개발되며, L3 이동통신알림망과 이더넷(Ethernet)을 통해 통신한다.

![그림 2] 이동통신시스템 구성도

HMM 이동단말은 다양한 형태의 단말 플랫폼을 가질 수 있으며, 초고속 이동대용량 서비스 지원을 위한 초고속 무선 인터페이스 및 멀티미디어 서비스를 제공할 수 있어야 한다.

이동단말과 접속망(Subscriber Network)간 통신을 위한 프로토콜 스케줄 구조는 제어 평면과 사용자 평면으로 구분되며, 각각 그림 3, 4와 같다.

![그림 3] Control Plane 프로토콜 스크립트 구조
[그림 4] User Plane 프로토콜 스택 구조

이동통신시스템에서 L3 이상의 기능을 담당하는 L3 이 동단말플랫폼은 MT High-layer Protocol Block Subsystem(이하 MHPS)이라는 형상어름을 갖고, 여러 블록으로 구성되며, 각 블록들간 관계는 그림 5와 같다. 그림에서 PHY, MAC, PDCP 블록은 L1/L2 플랫폼에 해당하며, 이 블록을 제외한 나머지 블록들은 L3 이동단말플랫폼의 임베디드 하드웨어 및 제어 패널/사용자 패널 기능을 포함하는 소프트웨 어를 의미한다. SPEB, SPTB, SPDB, SPXB은 이동단말 플 랫폼의 하드웨어에 해당하는 블록이며, 기능은 다음과 같다.

[그림 5] L3 이동단말 플랫폼 블록(MHPS) 구성도

- SPEB (SW Platform Run-Environment Block)
 - 임베디드 소프트웨어 플랫폼의 하드웨어 초기화 기능
 - FLASH 메모리 공간에 커널 이미지 및 Jffs2 파일의 파일시스템 기록 기능
 - 플랫폼 부팅시 커널 및 파일시스템을 RAM으로 로딩 기능
 - GUI 응용 프로그램 지원

- SPTB (SW Platform Toolkit Block)
 - 소프트웨어 플랫폼에 설치되는 소프트웨어 오브젝트 코드 생성 기능
 - 타켓 플랫폼의 FLASH 메모리 공간에 부트로더 바이너리 코드 기록 기능

- SPDB (SW Platform Device Block)
 - 소프트웨어 및 응용 서비스 실행 가능
 - 응용 프로그램의 실행 및 파일 저장 관리 가능
 - L1/L2와의 통합 가능
 - 응용서비스를 위한 입출력 장치 제어 기능
 - 다비오 제어와 관련된 SPEB와의 정합 인터페이스 지원 기능

- SPXB (SW Platform External Interface Block)
 - HMm 단말 L3에서 하위 모듈(L1/L2)을 인식하여 L2와 L3의 접속을 초기화하는 기능
 - 하위 모듈간의 연결 상태를 모니터링하기 위한 신호 기능
 - 외부 접속 복구 기능
 - L2와 L3의 접속 상태 LED를 통한 디스플레이 기능

3. L3 이동단말 플랫폼

본 장에서는 2장에서 설명한 통신 프로토콜과 멀티미 디어 서비스를 위한 응용프로그램을 담당하고 실행할 수 있는 이동단말 플랫폼의 하드웨어 구성 및 소프트웨어 구성에 대해 설명한다.

3.1 이동단말 플랫폼의 하드웨어 구성

L3 단말 플랫폼의 하드웨어 구조는 그림 6과 같고, 사양은 표 1과 같다.

[표 1] 하드웨어 사양

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel PXA255 400MHz</td>
</tr>
<tr>
<td>SDRAM</td>
<td>Samsung 64MByte</td>
</tr>
<tr>
<td>Flash</td>
<td>Intel strata flash 32MBYTE</td>
</tr>
<tr>
<td>Ethernet</td>
<td>CS8900A 10BaseT</td>
</tr>
<tr>
<td>Audio</td>
<td>AC‘97 Stereo audio</td>
</tr>
<tr>
<td>Display</td>
<td>LG TFT LCD 6.4*(640 * 480)</td>
</tr>
<tr>
<td>Touch</td>
<td>ADST7843 (Touch screen)</td>
</tr>
<tr>
<td>USB</td>
<td>USB Master/Slave</td>
</tr>
<tr>
<td>Serial / JTAG</td>
<td>3 Port / 1 Port</td>
</tr>
<tr>
<td>RTC</td>
<td>RTC4513 (Real Time Clock)</td>
</tr>
<tr>
<td>CF / MMC</td>
<td>1 Slot / 1 Slot</td>
</tr>
</tbody>
</table>
표준 무선랜 등을 추가할 수 있다. CF 내의 MMC (MultiMedia Card)를 지원하도록 하였다.

USB V1.1 마스터/슬레이브 모드를 모두 사용할 수 있도록 USB 마스터 컨트롤러를 탑재하였다. 프로세서와 연결된 입출력 포트로 단말의 상태를 표시할 수 LED, 외부 입력용 버튼, 그리고 기타 간단한 장치들은 GPIO 유닛에 연결한다.

3.2 이동단말 플랫폼의 소프트웨어 사양

3.2.1 실행 환경

본 연구에서 개발한 L3 이동단말 플랫폼의 운영체제 에는 리눅스 버전을 적용할 수 있는 임베디드 리눅스를 적용하였고, Tiny X 서버로 동작한 GUI 환경을 제공한다. 단말 플랫폼의 소프트웨어 사양을 간략하게 정리하면 표 2와 같다.

![표 2] 소프트웨어 사양

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/S</td>
<td>Linux 2.4.21 kernel</td>
</tr>
<tr>
<td>Device Driver</td>
<td>CS8900 Ethernet, AC97 stereo audio, Frame buffer for LCD, ADS7843 (Touch screen), USB Slave, CF, RTC4513 (Real Time Clock)</td>
</tr>
<tr>
<td>File System</td>
<td>JFFS2, Ramdisk</td>
</tr>
<tr>
<td>GUI</td>
<td>Tiny X Server, MP3 Player, MPEG Player, X virtual keyboard, Game</td>
</tr>
</tbody>
</table>

이동단말 커널 소스(2.4.18-rmk7-pxa1-xmit1.tar.gz)는 linux-2.4.18.tar.gz (리눅스 소스), patch-2.4.18-rmk7.gz (ARM 패치), diff-2.4.18-rmk7-pxa1.gz, (PXA255 패치), xmit1-0.2.gz (이동단말 패치)로 구성된다[7].

이동단말 플랫폼용 타켓보드의 파일 시스템은 사양에 맞게 여러 가지를 섭취적으로 사용할 수 있다. Ramdisk, Jfs, Jffs2, Cramfs, Ramfs 등을 파일시스템으로 사용한다. 루트 파일시스템에는 커널이 동작하기 위한 공간과 라이브러리, 유플랫폼 등이 포함된다. 대용량 파일들을 관리하기 위해서는 Jfs, 루트 파일시스템을 사용하고, 파일 시스템을 작동 시스템의 빠른 접근이 필요할 때는 램 디스크(Ramdisk) 파일시스템을 사용한다.

Jfs2 파일시스템은 MTD 드라이버에 의해 플래시 메모리에서 구현되는 파일 시스템으로 화일을 압축하여, 용량의 대체화를 볼 수 있다. 램 디스크는 별다른 물리적 장치를 지칭하는 것이 아니
라, 에보리의 일부를 디스크로 인식시킨 것으로 RAM에서 동작하기 때문에, 임코쓰기 이자 베이트가 있다. 따라서, 화면을 루트 파일 시스템으로 사용하는 것이 이범데드 리눅스 시스템에서 가장 일반적인 방법이다. Gzip 알고리즘을 압축을 하기 때문에 용량을 줄일 수 있다. 단점은 메모리 일부를 할당하기 때문에 그 만큼의 메모리를 못 쓸게 되며, 휴대성이므로 시스템 재부팅되거나 깨지면 그 내용을 사라진다.

이동단말 소프트웨어 환경에서는 하드웨어 플랫폼에 포함된 장치들을 사용할 수 있도록 하는 기본 디바이스 드라이버를 제공한다. 프레임 버퍼(Frame Buffer)는 화면 픽셀 색상을 표시할 화면의 2차원 경계를 일시적으로 저장하기 위해 사용되는 가상 장치이다.

임베디드 리눅스 환경의 오픈 소스를 활성화 할 수 있도록 하는 Tiny-X, Gtk, 원도우 레니, iDesk, 가상 화면 키보드, 난타 입력기 환경이 지원되고, 이동 단말의 응용 서비스인 영상 지원 SIP(Session Initiation Protocol) 서비스, 웹브라우저 서비스, 스티커 서비스를 지원할 수 있는 응용 프로그램이 개발/개발되었다.

3.2.2 SW 개발 환경

이동단말 플랫폼의 SW 개발 환경을 구축하기 위해서는 운영체제, 파일시스템, 트래닉, 라이브러리 패키지, 응용 프로그램 등이 필요하다. 이러한 SW 개발 환경을 표 3에 정리하였다.

<table>
<thead>
<tr>
<th>변수</th>
<th>Spec & Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host PC OS</td>
<td>Redhat Linux 9.0 (Linux 2.4.20-8 kernel)</td>
</tr>
<tr>
<td>File System</td>
<td>JFFS2</td>
</tr>
<tr>
<td>Toolchain</td>
<td>gcc-3.2.1 (GNU C Compiler) binutil-2.13.90.0.16 glibc-2.3.2</td>
</tr>
<tr>
<td>Library packages</td>
<td>Ami-1.2, atk-1.2.4 audiofile-0.19, gdk-pixbuf-0.8.0 glib-2.12.10-10, glib-2.2.3 gtk-2.12.10-25, gtk-2.2.4 etc</td>
</tr>
<tr>
<td>Window Manager</td>
<td>icewm-1.2.16</td>
</tr>
<tr>
<td>X server</td>
<td>X430(Tiny-X)</td>
</tr>
<tr>
<td>Web Browser</td>
<td>dillo-0.8.1, minimo(mini-mozilla-1.8-x)</td>
</tr>
<tr>
<td>Virtual Keyboard</td>
<td>xvkb-2.6</td>
</tr>
<tr>
<td>Service Applications</td>
<td>VoIP, Chatting, Streaming</td>
</tr>
</tbody>
</table>

이동 단말 MT의 SW 플랫폼은 크로스 플랫폼을 사용하여 리눅스 커널 오픈 소스, 각종 디바이스 드라이버, 응용 라이브러리를 컴파일하여 설치하였다.

3.3 이동단말 플랫폼의 메모리 가용도

이동단말의 경우 일반 컴퓨터에 비해 컴퓨터 능력이 떨어지고 메모리 용량이 작으므로 효율적인 메모리 관리가 필요하다. L3 이동단말 플랫폼이 지원하는 메모리 종류와 이들의 가용도는 다음과 같다. 이러한 환경에서 프로토콜 스택 및 응용 서비스가 수행된다.

3.3.1 단말 플랫폼 메모리 종류 및 용량

<table>
<thead>
<tr>
<th>메모리 종류</th>
<th>가용 용량</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRAM</td>
<td>64MB</td>
</tr>
<tr>
<td>FLASH ROM</td>
<td>32MB</td>
</tr>
<tr>
<td>MMC</td>
<td>256MB</td>
</tr>
<tr>
<td>CF 메모리</td>
<td>512MB</td>
</tr>
</tbody>
</table>

3.3.2 단말 플랫폼 메모리 가용도

이 절에서는 단말 플랫폼에 탑재된 FLASH ROM과 SDRAM의 가용도를 정리한다. 32MB FLASH ROM에는 부트로더, 파티션 테이블, 커널, 파일 시스템, L3 프로토콜 바이너리 파일이 탑재된다. 각 이메지의 크기는 표 4와 같다. FLASH ROM의 가용 크기는 32,768KB이다.

<table>
<thead>
<tr>
<th>메모리 종류</th>
<th>가용 용량</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition Map</td>
<td>256</td>
</tr>
<tr>
<td>Partition Table</td>
<td>256</td>
</tr>
<tr>
<td>Kernel</td>
<td>512</td>
</tr>
<tr>
<td>File System</td>
<td>29,950</td>
</tr>
<tr>
<td>L3 protocol</td>
<td>나머지 용량</td>
</tr>
</tbody>
</table>

3.4 이동단말 플랫폼 SDRAM 가용도

<table>
<thead>
<tr>
<th>메모리 종류</th>
<th>가용 용량</th>
</tr>
</thead>
<tbody>
<tr>
<td>eLinux Kernel & Device Drivers</td>
<td>11,796</td>
</tr>
<tr>
<td>Xrm255(X-Server)</td>
<td>268</td>
</tr>
<tr>
<td>ICEWM(Window Manager)</td>
<td>1,500</td>
</tr>
<tr>
<td>Mozilla (Web Browser)</td>
<td>-</td>
</tr>
<tr>
<td>gqmp3 (MP3 Player)</td>
<td>2,272</td>
</tr>
<tr>
<td>swfplayer (FlashPlayer-0.4.11)</td>
<td>1,636</td>
</tr>
</tbody>
</table>
표 5는 이동단말 플랫폼 작동시 SDRAM에 탑재되는 바이너리 코드들의 실행 사이즈이다. SDRAM의 가용 크기는 62,664KB이다.

L3 이동단말 플랫폼에 탑재되는 웹브라우저, VoIP, 화상통신 등의 응용 프로그램은 FLASH ROM의 용량 제한으로 MMC나 CF 메모리와 같은 보조 메모리에 저장할 수 있다. 실제 구현시에는 L3 이동단말 플랫폼에서 구현하고자 하는 서비스와 관련된 응용 프로그램을 CF 메모리에 탑재하였다.

4. HMM 이동단말 플랫폼 테스트베드

4.1 L3 이동단말 플랫폼

[그림 7] 개발된 L3 이동단말 플랫폼 모습

그림 7은 위치에 설명한 사양으로 개발된 L3 이동단말 플랫폼의 모습이다. 이동단말의 하드웨어 플랫폼과 소프트웨어 플랫폼의 기능 검증은 완료되었고, 이동 단말의 응용 서비스인 영상 지원 SIP 서비스, 웹브라우징 서비스, 스트리밍 서비스 등을 탑재하고 있다.

4.2 이동단말 플랫폼 테스트베드

그림 8은 HMM L3 이동단말 플랫폼 테스트베드와 각 장비들의 화면과 프로토콜 스택 등을 보이고 있다. 응용 서비스로 VOD 서버, DNS/FTP 서버, SIP 서버가 구축되어 단말과 통신이 수행되었고, SIP 서비스 시연을 위해 네트워크의 반대편에 SIP 헤더를 설치하여 HMM 단말과영상응용통화를 동시에 수행하였다.

접속망/핵심망 시뮬레이터(AS/CN simulator)는 기지국과 핵심망의 기능을 시뮬레이션하여 기지국 장비가 실제로 사용되지 않더라도 자체망에서 호처리 및 기타 서비스 시험을 수행하기 위해 개발되었다.

HMM MT는 모든 단말 기능이 업데이터 단말과 테스트 컴퓨터에서 동일하게 수행될 수 있도록 구현하였다. 업데이터 단말의 컴퓨팅 능력이 HMM 시스템에서 요구하는 멀티미디어 서비스를 지원하기에 부족한 경우를 대비하여 테스트 컴퓨터에도 MT 기능을 구현한 것이다. 단말과 연결되어 있는 DM(Diagnostic Monitor)은 이더넷을 통해 단말과 접속망/핵심망 사이를 오가는 호처리 결차 및 패킷 데이타량을 분석하기 위 한 전단 장치로 개발되었다. 이 장치를 통해 전체 네트워크를 통해 MT에서
처리되는 데이터량을 모니터링 할 수 있다.

그림 8의 HMM L3 이동단말 플랫폼 테스트베드 시험 환경을 간략하게 도식화하면 그림 9와 같고, 이 테스트베드에서 기능 검증이 완료된 후 L1/L2 플랫폼과 기저국이 모두 연동된 HMM 시스템 테스트베드에서 시험되었다.

![그림 9] 자체 시험 환경 구성도

HMM 시스템 테스트베드에서 L3 이동단말 플랫폼을 테스트한 결과 기본적인 호처리 및 단말 고유의 기본적인 응용서비스를 성공적으로 지원하며 안정적으로 작동하였다.

호처리에 대한 시험은 L3 프로토콜인 RC, MC, SC 등의 상세내역에 정의된 메시지 흐름에 따라 플랫폼에 정상적으로 작동하는지 시험절차서에 따라 검증하였다. 우선화된 주요 절차인 이동단말의 셀링, RC 연결지정, 우선 비어려 지정, 우선 비어려 해제, 연결 해제 등을 시험하였고, 이동성 제어의 주요 절차인 attach/detach, routing area 변경 등을 시험하였으며, 새로운 제어의 주요 절차인 PDP context 활성화/비활성화 등을 시험하였다. 모든 절차는 L1/L2와 연동하여 정상적으로 수행되었다.

응용서비스 시험은 L1/L2와 연동된 L3 단말플랫폼이 정상적인 호처리를 통해 시스템이 요구하는 데이터 최대 전송속도를 보장하는지 확인하기 위한 것으로 이를 위 해 대용량 파일 전송 서비스와 스트리밍 서비스를 수행하여 검증 완료하였다. 또한 이동단말의 LCD 디바이스 드라이버의 비트로 대용량 파일 전송 서비스와 동영상 전송 서비스의 경우 데이터 전송에는 문제가 없었지만 LCD 화면 신호의 동기에 문제가 발생하여 화면에 일부 깨지는 문제가 발생하였다. 이 문제는 LCD 디바이스 드라이버 수정을 통해 해결될 수 있을 것이다.

본 연구를 통해 개발되어 성공적으로 기능 검증이 완료된 L3 이동단말 플랫폼은 임베디드 리눅스를 기반으로 개발된 이동통신용 임베디드 시스템으로 향후 4G 이동통신단말 개발시 좋은 창조 모델이 될 것이다.

5. 결론

본 논문에서는 차세대 이동통신시스템의 핵심적인 요구사항인 고속이동데이터서비스 제공을 위해 개발된 L3 이동단말플랫폼의 구조, 기능, 구현 결과와 겸손과 핵심양과의 연동에 테스트베드에 대해 소개하였다. 이동단말플랫폼은 PXA255 기반으로 멀티미디어 및 다양한 인하설차를 지원하도록 설계되었고, 소프트웨어 플랫폼은 임베디드 리눅스 기반으로 L3 제어 프로토콜과 웹, VoIP, FTP 등의 다양한 응용 프로그램을 지원한다. L3 이동단말 플랫폼의 기능 기능 및 응용서비스가 정상적으로 작동할지를 검증하였고, 향후는 OMAP 기반의 하드웨어 플랫폼으로 멀티미디어 기능 지원 복잡 및 이동단말 크기를 소형화하고, 최신 리눅스 커널 기반의 소프트웨어 플랫폼을 구축할 계획이다. 이동통신시스템 연구개발시 단말장치의 경우 임베디드 장비 형태로 개발되는 경우가 많지 않음에도, 본 연구에서는 실용화 전단계의 단말시스템을 구현했다는 측면에서 그 의미가 크 것이며, 향후 멀티미디어 기능이 강화된 4세대 이동단말 개발시 참고가 될 것이다.

참고문헌

노 광 현(Kwang-Hyun Ro)

[정회원]

- 1995년 2월 : 고려대학교 산업시스템공학과 (공학사)
- 1997년 2월 : 고려대학교 산업시스템공학과 (공학석사)
- 2001년 8월 : 고려대학교 산업시스템공학과 (공학박사)
- 2001년 10월 ~ 2002년 10월 : Ecole des Mines de Paris (Post Doc)

- 2003년 2월 ~ 2006년 7월 : 한국전자통신연구원 이동통신연구단 연구원
- 2006년 8월 ~ 2007년 8월 : 한국항공우주연구원 위성기술사업단 선임연구원
- 2007년 9월 ~ : 한성대학교 산업시스템공학과 조교수

<관심분야>
차세대 이동통신, RFID/USN