DOI QR코드

DOI QR Code

A Study on Nano-Accelerometer based on Carbon Nanotube

탄소나노튜브 기반의 나노-가속도계에 관한 연구

  • 송영진 (건양대학교 전자정보공학과) ;
  • 이준하 (상명대학교 컴퓨터시스템공학과)
  • Published : 2009.01.31

Abstract

We investigated the characteristics of a capacitive nano-accelerometer based on carbon nanotube by means of classical molecular dynamics simulations. The position of the telescoping nanotube was controlled by the externally applied force and the feedback sensing was achieved from the capacitance change. Considering energy dissipation, the oscillation features of the nano-accelerometers were similar, regardless of their initial displacements. The capacitance variations, which were almost linearly proportional to the applied acceleration, were monitored within an error tolerance.

나노튜브를 기반으로 한 용량성 나노 가속도계에 대한 특성을 고전적인 분자동역학 시뮬레이션을 이용하여 연구하였다 외부에서 공급된 힘을 이용하여 나노튜브의 위치를 제어할 수 있었고, 해당하는 위치에 의한 커패시턴스의 변화를 통하여 피드백 센싱을 할 수 있었다. 에너지 소모 측면을 고려하면, 나노 가속도계의 진동 특성은 초기 변위와는 무관하였으며, 이러한 측정 시스템은 진동하는 커패시턴스를 추적하여 가속도를 결정하고, 이것은 또한 공급된 힘과 용량성 힘, 반데르발스 힘, 결합력, 반발력과 같은 힘들이 균형을 이루는 위치를 결정할 수 있다.

Keywords

References

  1. Drexler K. E, Nanosystems: Molecular Machinery, Manufacturing, and Computation, New York: Wiley, 1992.
  2. Hierold C, From micro-to nanosystems: mechanicalsensors go nano, J. Micromech. Microeng. 14 S1-11,2004. https://doi.org/10.1088/0960-1317/14/9/001
  3. Iijima S, Helical microtubules of graphitic carbon, Nature 354 56-85, 1991. https://doi.org/10.1038/354056a0
  4. Mineta T, Kobayashi S, Watanabe Y, Kanauchi S, Nakagawa I, Suganuma E and Esashi M, Three-axis capacitive accelerometer with uniform axial sensitivities, J. Micromech. Microeng. 6 431-5, 1996. https://doi.org/10.1088/0960-1317/6/4/010
  5. Chau K. H-L, Lewis S R, Zhao Y, Howe R T, Bart S F and Marcheselli R G, An integrated force-balanced capacitive accelerometer for low-g applications, Sensors and Actuators A 54 472-6, 1996. https://doi.org/10.1016/S0924-4247(97)80006-4
  6. Baughman R H, Cui C, Zakhidov A A, Iqbal Z, Barisci J N, Spinks G M, Wallace G G, Mazzoldi A, De Rossi D, Rinzler A G, Jaschinski O, Roth S and Kertesz M, Carbon Nanotube Actuators, Science 284 1340-4, 1999. https://doi.org/10.1126/science.284.5418.1340
  7. Lee C L, Noy A, Swierkowski S P, Fisher K A and Woods B W, Carbon nanotube array based sensor, US Patent 6,946,851, 2005.
  8. Qian K, Chen T, Yan B, Lin Y, Xu D, Sun Z andCai B, Research on carbon nanotube array fieldemission pressure sensors, Electron. Lett. 41 824-5,2005. https://doi.org/10.1049/el:20051360
  9. Cumings J and Zettl A, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science 289 602-4, 2000. https://doi.org/10.1126/science.289.5479.602
  10. Zheng Q and Jiang Q, Multiwalled Carbon Nanotubes as Gigahertz Oscillators, Phys. Rev. Lett. 88 045503, 2002. https://doi.org/10.1103/PhysRevLett.88.045503
  11. Hudlet S, Saint Jean M, Guthmann C and Berger J, Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface, Eur Phys. J. B 2 5-10, 1998. https://doi.org/10.1007/s100510050219
  12. Tersoff J,Empirical interatomic potential for silicon with improved elastic properties , Phys. Rev. B 38 9902-5. 1998. https://doi.org/10.1103/PhysRevB.38.9902
  13. Ulbricht H, Moos G and Hertel T, Interaction of C60 with Carbon Nanotubes and Graphite, Phys Rev. Lett. 90 095501, 2003. https://doi.org/10.1103/PhysRevLett.90.095501