DOI QR코드

DOI QR Code

ON THE MEAN VALUES OF DEDEKIND SUMS AND HARDY SUMS

  • Liu, Huaning (DEPARTMENT OF MATHEMATICS NORTHWEST UNIVERSITY)
  • Published : 2009.01.31

Abstract

For a positive integer k and an arbitrary integer h, the classical Dedekind sums s(h,k) is defined by $$S(h,\;k)=\sum\limits_{j=1}^k\(\(\frac{j}{k}\)\)\(\(\frac{hj}{k}\)\),$$ where $$((x))=\{{x-[x]-\frac{1}{2},\;if\;x\;is\;not\;an\;integer; \atop \;0,\;\;\;\;\;\;\;\;\;\;if\;x\;is\;an\;integer.}\$$ J. B. Conrey et al proved that $$\sum\limits_{{h=1}\atop {(h,k)=1}}^k\;s^{2m}(h,\;k)=fm(k)\;\(\frac{k}{12}\)^{2m}+O\(\(k^{\frac{9}{5}}+k^{{2m-1}+\frac{1}{m+1}}\)\;\log^3k\).$$ For $m\;{\geq}\;2$, C. Jia reduced the error terms to $O(k^{2m-1})$. While for m = 1, W. Zhang showed $$\sum\limits_{{h=1}\atop {(h,k)=1}}^k\;s^2(h,\;k)=\frac{5}{144}k{\phi}(k)\prod_{p^{\alpha}{\parallel}k}\[\frac{\(1+\frac{1}{p}\)^2-\frac{1}{p^{3\alpha+1}}}{1+\frac{1}{p}+\frac{1}{p^2}}\]\;+\;O\(k\;{\exp}\;\(\frac{4{\log}k}{\log\log{k}}\)\).$$. In this paper we give some formulae on the mean value of the Dedekind sums and and Hardy sums, and generalize the above results.

Keywords

References

  1. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, No. 41. Springer-Verlag, New York-Heidelberg, 1976.
  2. B. C. Berndt, A new proof of the reciprocity theorem for Dedekind sums, Elem. Math. 29 (1974), 93-94.
  3. B. C. Berndt, Dedekind sums and a paper of G. H. Hardy, J. London Math. Soc. (2) 13 (1976), no. 1, 129-137. https://doi.org/10.1112/jlms/s2-13.1.129
  4. B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Advances in Math. 23 (1977), no. 3, 285-316. https://doi.org/10.1016/S0001-8708(77)80031-5
  5. B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365. https://doi.org/10.1515/crll.1978.303-304.332
  6. B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta functions, SIAM J. Math. Anal. 15 (1984), no. 1, 143-150. https://doi.org/10.1137/0515011
  7. X. Chen and W. Zhang, A sum analogous to Dedekind sums and its mean value formula, Chinese Ann. Math. Ser. A 21 (2000), no. 6, 715-722.
  8. J. B. Conrey, E. Fransen, R. Klein, and C. Scott, Mean values of Dedekind sums, J. Number Theory 56 (1996), no. 2, 214-226. https://doi.org/10.1006/jnth.1996.0014
  9. R. Dedekind, Erlauterungen zu der Riemannschen Fragmenten uber die Grenzfalle der elliptischen Funktionen, Gesammelte Math. Werke 1, Braunschweig, 1930, 159-173.
  10. U. Dieter, Cotangent sums, a further generalization of Dedekind sums, J. Number The- ory 18 (1984), no. 3, 289-305. https://doi.org/10.1016/0022-314X(84)90063-5
  11. R. R. Hall and M. N. Huxley, Dedekind sums and continued fractions, Acta Arith. 63 (1993), no. 1, 79-90.
  12. G. H. Hardy and E. M.Wright, An Introduction to the Theory of Numbers, Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.
  13. C. Jia, On the mean value of Dedekind sums, J. Number Theory 87 (2001), no. 2, 173-188. https://doi.org/10.1006/jnth.2000.2580
  14. H. Liu and W. Zhang, On the even power mean of a sum analogous to Dedekind sums, Acta Math. Hungar. 106 (2005), no. 1-2, 67-81. https://doi.org/10.1007/s10474-005-0006-4
  15. M. R. Pettet and R. Sitaramachandrarao, Three-term relations for Hardy sums, J. Num- ber Theory 25 (1987), no. 3, 328-339. https://doi.org/10.1016/0022-314X(87)90036-9
  16. J. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993), no. 1, 1-24. https://doi.org/10.1007/BF01444874
  17. H. Rademacher and E. Grosswald, Dedekind sums, The Carus Mathematical Mono- graphs, No. 16. The Mathematical Association of America, Washington, D.C., 1972.
  18. R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith. 48 (1987), no. 4, 325-340.
  19. H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), no. 1, 1-3.
  20. W. Zhang, On the mean values of Dedekind sums, J. Theor. Nombres Bordeaux 8 (1996), no. 2, 429-442. https://doi.org/10.5802/jtnb.179
  21. W. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hungar. 86 (2000), no. 4, 275-289. https://doi.org/10.1023/A:1006724724840
  22. W. Zhang, A sum analogous to the Dedekind sum and its mean value formula J. Number Theory 89 (2001), no. 1, 1-13. https://doi.org/10.1006/jnth.2000.2624

Cited by

  1. A new generalization of Hardy–Berndt sums vol.123, pp.2, 2013, https://doi.org/10.1007/s12044-013-0125-8