References
- T. D. Benavides, G. L. Acedo, and H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248/249 (2003), 62-71. https://doi.org/10.1002/mana.200310003
- F. E. Browder, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 388-393. https://doi.org/10.1073/pnas.61.2.388
-
R. E. Bruck Jr., A strongly convergent iterative solution of 0<
$\varepsilon$ 2 U(x) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. https://doi.org/10.1016/0022-247X(74)90219-4 - R. Chen, Y. Song, and H. Zhou, Viscosity approximation methods for continuous pseudocontractive mappings, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 6, 1275-1278.
- R. Chen, Y. Song, and H. Zhou, Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings, J. Math. Anal. Appl. 314 (2006), no. 2, 701-709. https://doi.org/10.1016/j.jmaa.2005.04.018
- K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. https://doi.org/10.1007/BF01171148
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- R. H. Martin Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc. 26 (1970), 307-314. https://doi.org/10.2307/2036395
- R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathe- matics, 183. Springer-Verlag, New York, 1998.
- O. Nevanlinna, Global iteration schemes for monotone operators, Nonlinear Anal. 3 (1979), no. 4, 505-514. https://doi.org/10.1016/0362-546X(79)90065-8
- M. O. Osilike, Approximation methods for nonlinear m-accretive operator equations, J. Math. Anal. Appl. 209 (1997), no. 1, 20-24. https://doi.org/10.1006/jmaa.1997.5302
- S. Reich, Constructive techniques for accretive and monotone operators, Applied non-linear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335-345, Academic Press, New York-London, 1979.
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-trol Optimization 14 (1976), no. 5, 877-898. https://doi.org/10.1137/0314056
- N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641-3645. https://doi.org/10.1090/S0002-9939-97-04033-1
- T. Suzuki, Moudafi’s viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl. 325 (2007), no. 1, 342-352. https://doi.org/10.1016/j.jmaa.2006.01.080
- T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
- Y. Song, On a Mann type implicit iteration process for continuous pseudo-contractive mappings, Nonlinear Anal. 67 (2007), no. 11, 3058-3063. https://doi.org/10.1016/j.na.2006.09.059
- Y. Song, Iterative approximation to common fixed points of a countable family of nonexpansive mappings, Appl. Anal. 86 (2007), no. 11, 1329-1337. https://doi.org/10.1080/00036810701556144
- Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, Nonlinear Anal. 67 (2007), no. 2, 486-497. https://doi.org/10.1016/j.na.2006.06.009
- Y. Song and R. Chen, An approximation method for continuous seudocontractive mappings, J. In-equal. Appl. 2006 (2006), Art. ID 28950, 9 pp.
- W. Takahashi, Nonlinear Functional Analysis– Fixed Point Theory and its Applications, Yokohama Publishers inc, Yokohama, 2000.
- W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), no. 2, 546-553. https://doi.org/10.1016/0022-247X(84)90019-2
- H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082
- E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators, Springer- Verlag, Berlin, 1985.
Cited by
- Some results on Rockafellar-type iterative algorithms for zeros of accretive operators vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-255
- Halpern type proximal point algorithm of accretive operators vol.75, pp.4, 2012, https://doi.org/10.1016/j.na.2011.09.036
- An explicit iteration for zeros of accretive operators vol.233, 2014, https://doi.org/10.1016/j.amc.2014.01.088
- Iterative solutions for zeros of multivalued accretive operators vol.284, pp.2-3, 2011, https://doi.org/10.1002/mana.200710107