DOI QR코드

DOI QR Code

NEW ITERATIVE ALGORITHMS FOR ZEROS OF ACCRETIVE OPERATORS

  • Song, Yisheng (COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE HENAN NORMAL UNIVERSITY)
  • Published : 2009.01.31

Abstract

Two new iterative algorithms are provided to find zeros of accretive operators in a Banach space E with a uniformly $G\hat{a}teaux$ differentiable norm. Strong convergence for two iterations is proved and as applications, the viscosity approximation results are obtained also.

Keywords

References

  1. T. D. Benavides, G. L. Acedo, and H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248/249 (2003), 62-71. https://doi.org/10.1002/mana.200310003
  2. F. E. Browder, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 388-393. https://doi.org/10.1073/pnas.61.2.388
  3. R. E. Bruck Jr., A strongly convergent iterative solution of 0<$\varepsilon$2 U(x) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. https://doi.org/10.1016/0022-247X(74)90219-4
  4. R. Chen, Y. Song, and H. Zhou, Viscosity approximation methods for continuous pseudocontractive mappings, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 6, 1275-1278.
  5. R. Chen, Y. Song, and H. Zhou, Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings, J. Math. Anal. Appl. 314 (2006), no. 2, 701-709. https://doi.org/10.1016/j.jmaa.2005.04.018
  6. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. https://doi.org/10.1007/BF01171148
  7. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  8. R. H. Martin Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc. 26 (1970), 307-314. https://doi.org/10.2307/2036395
  9. R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathe- matics, 183. Springer-Verlag, New York, 1998.
  10. O. Nevanlinna, Global iteration schemes for monotone operators, Nonlinear Anal. 3 (1979), no. 4, 505-514. https://doi.org/10.1016/0362-546X(79)90065-8
  11. M. O. Osilike, Approximation methods for nonlinear m-accretive operator equations, J. Math. Anal. Appl. 209 (1997), no. 1, 20-24. https://doi.org/10.1006/jmaa.1997.5302
  12. S. Reich, Constructive techniques for accretive and monotone operators, Applied non-linear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335-345, Academic Press, New York-London, 1979.
  13. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  14. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-trol Optimization 14 (1976), no. 5, 877-898. https://doi.org/10.1137/0314056
  15. N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641-3645. https://doi.org/10.1090/S0002-9939-97-04033-1
  16. T. Suzuki, Moudafi’s viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl. 325 (2007), no. 1, 342-352. https://doi.org/10.1016/j.jmaa.2006.01.080
  17. T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
  18. Y. Song, On a Mann type implicit iteration process for continuous pseudo-contractive mappings, Nonlinear Anal. 67 (2007), no. 11, 3058-3063. https://doi.org/10.1016/j.na.2006.09.059
  19. Y. Song, Iterative approximation to common fixed points of a countable family of nonexpansive mappings, Appl. Anal. 86 (2007), no. 11, 1329-1337. https://doi.org/10.1080/00036810701556144
  20. Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, Nonlinear Anal. 67 (2007), no. 2, 486-497. https://doi.org/10.1016/j.na.2006.06.009
  21. Y. Song and R. Chen, An approximation method for continuous seudocontractive mappings, J. In-equal. Appl. 2006 (2006), Art. ID 28950, 9 pp.
  22. W. Takahashi, Nonlinear Functional Analysis– Fixed Point Theory and its Applications, Yokohama Publishers inc, Yokohama, 2000.
  23. W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), no. 2, 546-553. https://doi.org/10.1016/0022-247X(84)90019-2
  24. H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082
  25. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators, Springer- Verlag, Berlin, 1985.

Cited by

  1. Some results on Rockafellar-type iterative algorithms for zeros of accretive operators vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-255
  2. Halpern type proximal point algorithm of accretive operators vol.75, pp.4, 2012, https://doi.org/10.1016/j.na.2011.09.036
  3. An explicit iteration for zeros of accretive operators vol.233, 2014, https://doi.org/10.1016/j.amc.2014.01.088
  4. Iterative solutions for zeros of multivalued accretive operators vol.284, pp.2-3, 2011, https://doi.org/10.1002/mana.200710107