References
- J. A. Aledo, J. M. Espinar, and J. A. Galvez, Timelike surfaces in the Lorentz-Minkowski space with prescribed Gaussian curvature and Gauss map, J. Geom. Phys. 56 (2006), no. 8, 1357–1369. https://doi.org/10.1016/j.geomphys.2005.07.004
- C. Baikoussis and T. Koufogiorgos, Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom. 63 (1998), no. 1-2, 25–29. https://doi.org/10.1007/BF01221235
- D. E. Blair and Th. Koufogiorgos, Ruled surfaces with vanishing second Gaussian cur-vature, Monatsh. Math. 113 (1992), no. 3, 177–181. https://doi.org/10.1007/BF01641765
- F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom. 83 (2005), no. 1-2, 10–21. https://doi.org/10.1007/s00022-005-0002-4
- V. P. Gorokh, Two-dimensional minimal surfaces in a pseudo-Euclidean space, Ukrain. Geom. Sb. No. 31 (1988), 36–47; translation in J. Soviet Math. 54 (1991), no. 1, 691–699.
- S. Hirakawa, Constant Gaussian curvature surfaces with parallel mean curvature vector in two-dimensional complex space forms, Geom. Dedicata 118 (2006), 229–244. https://doi.org/10.1007/s10711-005-9038-8
- M. A. Magid, Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map, Hokkaido Math. J. 20 (1991), no. 3, 447–464. https://doi.org/10.14492/hokmj/1381413979
- B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- Y. Yu and H. Liu, The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 33–39, Kyungpook Nat. Univ., Taegu, 2007
Cited by
- Classification of factorable surfaces in the pseudo-Galilean space vol.50, pp.2, 2015, https://doi.org/10.3336/gm.50.2.12