DIMENSION AND INTERVAL DIMENSION OF CERTAIN BIPARTITE ORDERED SETS

DEOK RAK BAE AND JEH GWON LEE

ABSTRACT. We consider the dimension and interval dimension of bipartite ordered sets and provide a sufficient condition for when the two parameters are equal.

1. Introduction

Let X be a set. An order R on X is a reflexive, antisymmetric and transitive binary relation on X. Then P = (X, R) is called an ordered set. For $a, b \in X$, we usually write $a \leq b$ for $(a, b) \in R$ and also a < b when $a \leq b$ and $a \neq b$. In this paper, we assume that every set is finite. An order R on a set is called an extension of another order S on the same set if $S \subseteq R$. An order R is linear if $(a, b) \in R$ or $(b, a) \in R$ for any $a, b \in X$. Szpilarjn [3] showed that any order has a linear extension and that the intersection of all linear extensions of an ordered set P = (X, R), denoted by dim(P), to be the minimal cardinality of a family of linear extensions of R whose intersection is R itself.

An incomparable pair (a,b) in an ordered set P is called a *critical pair* if x < a implies x < b and x > b implies x > a. It is well known that the dimension of ordered set P is the least positive integer t for which there exists a family $\mathcal{R} = \{L_1, L_2, \ldots, L_t\}$ of linear extensions of the order of P reversing all critical pairs in P. An ordered set $P = (X \cup Y, I_P)$ is bipartite if X and Y are disjoint nonempty sets and I_P is an order on $X \cup Y$ such that $\emptyset \neq \{(x,y) \in I_P \mid x \neq y\} \subseteq X \times Y$. In [4], Trotter defined the interval dimension of a bipartite ordered set P, denoted by $\dim_I(P)$, as the least positive integer t for which there exists a family $\mathcal{R} = \{L_1, L_2, \ldots, L_t\}$ of linear extensions of the order of P reversing all critical pairs only in $X \times Y$. Hence the interval dimension of P is quite easier to compute than the dimension of P in some cases. However, Trotter [4] has shown that $\dim(P) - 1 \leq \dim_I(P) \leq \dim(P)$ for any bipartite ordered set P. In this paper, we find a sufficient condition for

Received April 21, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 06A07.

Key words and phrases. bipartite ordered set, dimension, interval dimension, Ferrers dimension.

a bipartite ordered set P to have

$$\dim(P) = \dim_I(P)$$
.

2. Preliminaries

Let G and M be nonempty sets. We define a context as a triple (G, M, I)with $I \subseteq G \times M$ (see [5]). A subset F of $G \times M$ is called a Ferrers relation if g_1Fm_1 and g_2Fm_2 implies g_1Fm_2 or g_2Fm_1 for $g_1,g_2\in G$ and $m_1,m_2\in M$. For a Ferrers relation F in $G \times M$, we define

$$C(F) = \{g \in G \mid (g, m) \in F\} \text{ and } R(F) = \{m \in M \mid (g, m) \in F\}.$$

For $g \in G$ and $m \in M$, let

$$gF = \{m \in M \mid (g, m) \in F\} \text{ and } Fm = \{g \in G \mid (g, m) \in F\}.$$

Now observe that

- (i) $gF \subseteq g'F$ or $gF \supseteq g'F$ for $g, g' \in G$, (ii) $Fm \subseteq Fm'$ or $Fm \supseteq Fm'$ for $m, m' \in M$.

The Ferrers dimension of a context (G, M, I), denoted by fdim(G, M, I), is defined to be the smallest number of Ferrers relations F_1, F_2, \ldots, F_n in $G \times M$ with $I = \bigcap F_i$. Observe that the complement of a Ferrers relation in $G \times M$ is again a Ferrers relation in $G \times M$. Therefore, one can alternatively define $f\dim(G, M, I)$ as the minimum number of Ferrers relations F_1, F_2, \ldots, F_n in $G \times M$ such that $(G \times M) - I = \bigcup F_i$. For better visualization we shall use this alternative definition throughout this paper.

Let P = (X, R) be an ordered set. Then (X, X, R) is a context and it is well known (cf. [2]) that

$$\dim(P) = \dim(X, X, R).$$

Similarly, if $P = (X \cup Y, I_P)$ is a bipartite ordered set, then (X, Y, I_P) is also a context and it can be easily seen that

$$\dim_I(P) = \operatorname{fdim}(X, Y, I_P).$$

For instance, considering the bipartite ordered set $P = (X \cup Y, I_P)$ in Figure 1, we can find three Ferrers relations in $X \times Y$ to show that $\dim_I(P) = 3$ as in Table 1.

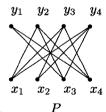


Figure 1

$X \setminus Y$	y_1	y_2	y_3	y_4
x_1	F_1	О	0	0
x_2	F_1	F_1	0	0
x_3	0	O	F_2	0
x_4	0	0	0	F_3

Here O means an order relation

Table 1

To state our main result in the next section, we need some definitions. Let $P = (X \cup Y, I_P)$ be a bipartite ordered set. Throughout this paper we consider $X = \{x_1, x_2, \dots, x_r\}$ and $Y = \{y_1, y_2, \dots, y_s\}$ with fixed indexing. For a Ferrers relation F in $X \times Y$, a nonempty subset $\{x_{i_1}, x_{i_2}, \dots, x_{i_m}\}$ of X is called a C_1 -set of F if

$$x_{i_1}F \supseteq x_{i_2}F \supseteq \cdots \supseteq x_{i_m}F$$
 with $i_1 > i_2 > \cdots > i_m$,

a nonempty subset $\{y_{i_1}, y_{i_2}, \dots, y_{i_n}\}$ of Y is called an R_1 -set of F if

$$Fy_{j_1} \supseteq Fy_{j_2} \supseteq \cdots \supseteq Fy_{j_n}$$
 with $j_1 < j_2 < \cdots < j_n$,

a nonempty subset $\{x_{i_1}, x_{i_2}, \dots, x_{i_m}\}$ of X is called a C_2 -set of F if

$$x_{i_1} F \supseteq x_{i_2} F \supseteq \cdots \supseteq x_{i_m} F$$
 with $i_1 < i_2 < \cdots < i_m$,

and a nonempty subset $\{y_{i_1}, y_{i_2}, \dots, y_{i_n}\}$ of Y is called an R_2 -set of F if

$$Fy_{j_1} \supseteq Fy_{j_2} \supseteq \cdots \supseteq Fy_{j_n}$$
 with $j_1 > j_2 > \cdots > j_n$.

A family \mathcal{F} of Ferrers relations in $X \times Y$ called a (optimal) realizer of P if $|\mathcal{F}| = \operatorname{fdim}(X, Y, I_P)$ and $\bigcup_{F \in \mathcal{F}} F = X \times Y - I_P$. Let \mathcal{E} be a nonempty subfamily of a realizer \mathcal{F} of P. We say that \mathcal{E} is a lower left cover of \mathcal{F} if for each $F \in \mathcal{E}$ there exist a C_1 -set X_F and an R_1 -set Y_F of F such that for some k and k

$$\bigcup_{F \in \mathcal{E}} X_F = \{x_k, x_{k+1}, \dots, x_r\} \text{ and } \bigcup_{F \in \mathcal{E}} Y_F = \{y_1, y_2, \dots, y_l\}.$$

Similarly, we say \mathcal{E} is an *upper right cover* of \mathcal{F} if for each $F \in \mathcal{E}$ there exist a C_2 -set X_F and an R_2 -set Y_F of F such that for some k and l

$$\bigcup_{F \in \mathcal{E}} X_F = \{x_1, x_2, \dots, x_k\} \text{ and } \bigcup_{F \in \mathcal{E}} Y_F = \{y_l, y_{l+1}, \dots, y_s\}.$$

Finally, for a Ferrers relation F in $X \times Y$, let

$$\underline{F} = \bigcup_{(x_k, y_l) \in F} \{ (x_u, y_v) \mid k \le u \text{ and } v \le l \}$$

and

$$\overline{F} = \bigcup_{(x_k, y_l) \in F} \{ (x_u, y_v) \mid u \le k \text{ and } l \le v \}.$$

3. Main theorem

In this section we prove the following main theorem.

Theorem. Let $P = (X \cup Y, I_P)$ be a bipartite ordered set with $X = \{x_1, x_2, ..., x_r\}$ and $Y = \{y_1, y_2, ..., y_s\}$ and let \mathcal{F} be a realizer of P. Suppose that there are a lower left cover \mathcal{F}_1 and an upper right cover \mathcal{F}_2 of \mathcal{F} with $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$ such that $\bigcap_{F \in \mathcal{F}_1} \overline{F} \cap \bigcap_{F \in \mathcal{F}_2} \overline{F} = \emptyset$. Then

$$\dim(P) = \dim_I(P).$$

Proof. Since $\dim_I(P) \leq \dim(P)$, it is enough to show that $\dim(P) \leq \dim_I(P)$. For each $F \in \mathcal{F}_1$, let

$$H_F = F \cup F_X \cup F_Y \cup F_0$$

where

- (i) F_X is a maximal Ferrers relation in $X \times X$ with the property that $F_X \subseteq \{(x_i, x_j) \in X \times X \mid i > j\}$ and that $xF \subset x'F \Longrightarrow xF_X \subseteq x'F_X$ for $x, x' \in X$,
- (ii) F_Y is a maximal Ferrers relation in $Y \times Y$ with the property that $F_Y \subseteq \{(y_u, y_v) \in Y \times Y \mid u > v\}$ and that $F_Y \subset F_Y = F_Y$
- (iii) $F_0 = \{(y, x) \mid (x, y) \in X \times Y F\}.$

For each $F \in \mathcal{F}_2$, let

$$H_{F}^{'} = F \cup F_{X}^{'} \cup F_{Y}^{'} \cup F_{0}^{'},$$

where

- (i) $F_X^{'}$ is a maximal Ferrers relation in $X \times X$ with the property that $F_X^{'} \subseteq \{(x_i, x_j) \in X \times X \mid i < j\}$ and that $xF \subset x^{'}F \Longrightarrow xF_X^{'} \subseteq x^{'}F_X^{'}$ for $x, x' \in X$,
- (ii) $F_Y^{'}$ is a maximal Ferrers relation in $Y \times Y$ with the property that $F_Y^{'} \subseteq \{(y_u, y_v) \in Y \times Y \mid u < v\}$ and that $Fy \subset Fy^{'} \Longrightarrow F_Y^{'}y \subseteq F_Y^{'}y^{'}$ for $y, y^{'} \in Y$, and
- (iii) $F_0' = \{(y, x) \mid (x, y) \in X \times Y \overline{F}\}.$

We shall prove that H_F and $H_F^{'}$ are Ferrers relations in $(X \cup Y) \times (X \cup Y)$. Since the case for $H_F^{'}$ can be treated similarly, we only show that each H_F is a Ferrers relation in $(X \cup Y) \times (X \cup Y)$.

Let $X_F = \{x_{i_1}, x_{i_2}, \dots, x_{i_m}\}$ with $i_1 > i_2 > \dots > i_m$ and $Y_F = \{y_{j_1}, y_{j_2}, \dots, y_{j_n}\}$ with $j_1 < j_2 < \dots < j_n$ which are a C_1 -set and an R_1 -set, respectively, of F. Now we have the following useful observations:

- (1) $x_t F_X = \{x_1, x_2, ..., x_{t-1}\}\$ if and only if $t \in \{2, 3, ..., i_m 1, i_m, ..., i_2, i_1\}.$
- (2) If $x_i \in C(F)$, then $x_i F_X = x_{i_t} F_X$ for some $x_{i_t} \in X_F$ with $i_t \leq i$.
- (3) If $xF \supset x_{i_p}F$ for some $x_{i_p} \in X_F$, then $xF_X \supseteq x_{i_{p-1}}F_X$.
- (4) If $t > i_m$, then $x_t F_X \supseteq x_{i_m} F_X$.
- (5) $(F_X \cup F_0)x_i \supseteq (F_X \cup F_0)x_j$ for all i, j with $1 \le i < j \le r$.
- (1) $F_Y y_w = \{y_{w+1}, y_{w+2}, ..., y_s\}$ if and only if $w \in \{j_1, j_2, ..., j_n, j_n + 1, j_n + 2, ..., s 1\}$.
- (2) If $y_j \in R(F)$, then $F_Y y_j = F_Y y_{j_w}$ for some $y_{j_w} \in Y_F$ with $j_w \geq j$.
- (3) If $Fy \supset Fy_{j_q}$ for some $y_{j_q} \in Y_F$, then $F_Y y \supseteq F_Y y_{j_{q-1}}$.
- (4) If $w < j_n$, then $F_Y y_w \supseteq F_Y y_{j_n}$.
- (5) $y_i(F_Y \cup F_0) \subseteq y_j(F_Y \cup F_0)$ for all i, j with $1 \le i < j \le s$.

Clearly, $F \cup F_X$ and $F \cup F_Y$ are Ferrers relations in $(X \cup Y) \times (X \cup Y)$. From (5) and (5)', we see that $F_X \cup F_0$ and $F_Y \cup F_0$ are also Ferrers relations in $(X \cup Y) \times (X \cup Y)$. Then it remains to show the following two cases:

- (I) If $(x, x') \in F_X$ and $(y, y') \in F_Y$, then $(y, x') \in F_0$ or $(x, y') \in F$.
- (II) If $(y, x) \in F_0$ and $(x', y') \in F$, then $(x', x) \in F_X$ or $(y, y') \in F_Y$.

To see (I), suppose that $(x_i, x_j) \in F_X$ and $(y_u, y_v) \in F_Y$ but $(y_u, x_j) \notin F_0$. Then we have i > j, u > v and $(x_j, y_u) \in \underline{F}$. Further, we know that there are $x_k \in X_F$ and $y_w \in Y_F$ with $j < k \le i$ and $v \le w < u$ such that $x_i F_X = x_k F_X$ and $F_Y y_v = F_Y y_w$. Since $(x_j, y_u) \in \underline{F}$, it follows that there is a pair $(x_p, y_q) \in F$ with $p \le j$ and $q \ge u$. Now p < k and so $x_i F_X = x_k F_X \supset x_p F_X$ whence $(x_i, y_q) \in F$. Similarly, since $v \le w < u \le q$, we have $F_Y y_v = F_Y y_w \supset F_Y y_q$. Hence $(x_i, y_v) \in F$, as desired.

To see (II), let $(y_v, x_u) \in F_0$ and $(x_{u'}, y_{v'}) \in F$. Since $u' \geq i_m$ or $v' \leq j_n$, it follows from (4) that if $u < i_m$ or $v > j_n$, then $(x_{u'}, x_u) \in F_X$ or $(y_v, y_{v'}) \in F_Y$, we are done. Now we may assume that there are $x_{i_p} \in X_F$ and $y_{j_q} \in Y_F$ such that

$$i_p \le u < i_p - 1 \text{ and } j_q < v \le j_{q+1}.$$

Then we have the following three cases to consider.

Case 1. $u' \leq u$ and v' < v.

Since $u^{'} \leq u$, it follows that $(x_{u^{'}}, x_{u}) \notin F_{X}$. Suppose that $(y_{v}, y_{v^{'}}) \notin F_{Y}$. Then $y_{v^{'}} \notin Y_{F}$ and hence there is an element $y_{j_{w}} \in Y_{F}$ with $j_{q+1} \leq j_{w}$ such that

(6)
$$F_Y y_{y'} = F_Y y_{j_w} \subseteq F_Y y_{j_{g+1}} \subset F_Y y_{j_g}.$$

Since $y_{v'}, y_{j_{q+1}} \in R(F)$, it follows that $F_{y_{v'}} \subseteq Fy_{j_{q+1}}$ or $F_{y_{v'}} \supset Fy_{j_{q+1}}$. If $Fy_{v'} \subseteq Fy_{j_{q+1}}$, then $(x_{u'}, y_{j_{q+1}}) \in F$. Since $u' \leq u$ and $v \leq j_{q+1}$, we have $(x_u, y_v) \in \underline{F}$, which is a contradiction. If $Fy_{v'} \supset Fy_{j_{q+1}}$, then $F_Yy_{v'} \supseteq F_Yy_{j_q}$ by (3)', which contradicts to (6).

Case 2. u < u' and $v \leq v'$.

This case can be done by a similar method to the preceding case.

Case 3. u < u' and v' < v.

Suppose that $(x_{u'}, x_u) \notin F_X$ and $(y_v, y_{v'}) \notin F_Y$. Then $x_{u'} \notin X_F$ and $y_{v'} \notin Y_F$ and so there is $x_w \in X_F$ with $w \leq i_p$ such that

$$(7) x_{u'}F_X = x_wF_X \subseteq x_{i_p}F_X$$

and there is $y_{w'} \in Y_F$ with $j_{q+1} \leq w'$ such that

(8)
$$F_{Y}y_{v'} = F_{Y}y_{w'} \subseteq F_{Y}y_{j_{q+1}}.$$

Since $x_{u'}, x_{i_p} \in C(F)$ and $y_{v'}, y_{j_{q+1}} \in R(F)$, it follows that

$$x_{u'}F \subseteq x_{i_p}F$$
 or $x_{u'}F \supset x_{i_p}F$

and

$$Fy_{v'} \subseteq Fy_{j_{q+1}}$$
 or $Fy_{v'} \supset Fy_{j_{q+1}}$.

If $x_{u'}F \supset x_{i_p}F$ or $Fy_{v'}\supset Fy_{j_{q+1}}$, then $x_{u'}F_X\supseteq x_{i_{p-1}}F_X\supset x_{i_p}F_X$ or $F_Yy_{v'}\supseteq F_Yy_{j_q}\supset F_Yy_{j_{q+1}}$ by (3) and (3)', which contradicts to (7) or (8). Thus, $x_{u'}F\subseteq x_{i_p}F$ and $Fy_{v'}\subseteq Fy_{j_{q+1}}$, whence $(x_{i_p},y_{v'})\in F$ and so $(x_{i_p},y_{j_{q+1}})\in F$. Since $i_p\le u$ and $v\le j_{q+1}$, we have $(x_u,y_v)\in F$, which is also a contradiction.

Consequently, H_F is a Ferrers relation in $(X \cup Y) \times (X \cup Y)$.

By the hypothesis, if $(x,y) \in X \times Y$, then $(x,y) \notin \underline{F}$ for some $F \in \mathcal{F}_1$ or $(x,y) \notin \overline{F}$ for some $F \in \mathcal{F}_2$, which implies that

$$Y \times X \subseteq \bigcup_{F \in \mathcal{F}_1} F_0 \cup \bigcup_{F \in \mathcal{F}_2} F_0'.$$

Since \mathcal{F}_1 and \mathcal{F}_2 are a lower left cover and an upper right cover, respectively, of \mathcal{F} , there exist a C_1 -set X_F and an R_1 -set Y_F of each $F \in \mathcal{F}_1$ for some k and l such that

$$\bigcup_{F\in\mathcal{F}_1}X_F=\{x_k,x_{k+1},\ldots,x_r\} \text{ and } \bigcup_{F\in\mathcal{F}_1}Y_F=\{y_1,y_2,\ldots,y_l\},$$

and there exist a C_2 -set $X_F^{'}$ and an R_2 -set $Y_F^{'}$ of each $F \in \mathcal{F}_2$ for some $k^{'}$ and $l^{'}$ such that

$$\bigcup_{F \in \mathcal{F}_2} X_F^{'} = \{x_1, x_2, \dots, x_{k^{'}}\} \text{ and } \bigcup_{F \in \mathcal{F}_2} Y_F^{'} = \{y_{l^{'}}, y_{l^{'}+1}, \dots, y_s\}.$$

Hence we can see from (1) and (1)' that

$$[X \times X - \{(x_i, x_i) \mid 1 \le i \le r\}] \cup [Y \times Y - \{(y_j, y_j) \mid 1 \le j \le s\}]$$

$$\subseteq \bigcup_{F \in \mathcal{F}_1} (F_X \cup F_Y) \cup \bigcup_{F \in \mathcal{F}_2} (F_X' \cup F_Y'),$$

and so

$$\bigcup_{F\in\mathcal{F}_1}H_F\cup\bigcup_{F\in\mathcal{F}_2}H_F^{'}\cup\bigcup\{F\in\mathcal{F}-(\mathcal{F}_1\cup\mathcal{F}_2)\}=(X\cup Y)\times(X\cup Y)-I_P.$$

Thus $\dim(P) \leq \dim_I(P)$, as desired.

4. Corollaries and examples

In this final section we have two simple corollaries and some examples as applications.

Corollary 1. Let $P = (X \cup Y, I_P)$ be a bipartite ordered set with $X = \{x_1, x_2, \dots, x_r\}$ and $Y = \{y_1, y_2, \dots, y_s\}$ and let \mathcal{F} be a realizer of P. If there are a lower left cover \mathcal{F}_1 and an upper right cover \mathcal{F}_2 of \mathcal{F} such that $\underline{F_1} \cap \overline{F_2} = \emptyset$ for some $F_1 \in \mathcal{F}_1$ and $F_2 \in \mathcal{F}_2$, then

$$\dim(P) = \dim_I(P).$$

Examples. A bipartite ordered set $P = (X \cup Y, I_P)$ is t-interval irreducible for some $t \geq 2$, if $\dim_I(P) = t$ but $\dim_I(P - \{u\}) = t - 1$ for every $u \in X \cup Y$. In [4], it is shown that P_1, P_2, P_3 and P_4 are 3-interval irreducible ordered sets (see Figure 2).

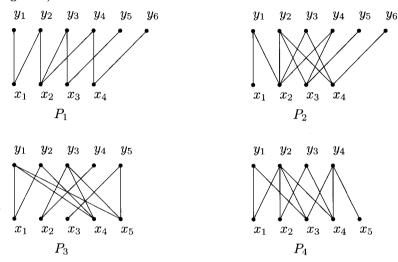


Figure 2

Consider the 3-interval irreducible ordered sets P_1 with $X = \{x_1, x_2, x_3, x_4\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5, y_6\}$. Then there is a realizer $\mathcal{F} = \{F_1, F_2, F_3\}$ of P_1 such that

$$F_1 = \{(x_3, y_2), (x_4, y_2), (x_4, y_3), (x_4, y_5)\},$$

$$F_2 = \{(x_2, y_1), (x_3, y_1), (x_4, y_1), (x_3, y_4)\},$$

$$F_3 = \{(x_1, y_3), (x_1, y_4), (x_1, y_5), (x_1, y_6), (x_2, y_5), (x_2, y_6), (x_3, y_6)\}.$$

Thus we see that $\{F_1, F_2\}$ is a lower left cover and $\{F_3\}$ is an upper right cover of \mathcal{F} . Since $\underline{F_1} \cap \overline{F_3} = \emptyset$, it follows from Corollary 1 that $\dim(P_1) = \dim_I(P_1) = 3$. Similarly, we can see that $\dim(P_i) = \dim_I(P_i) = 3$ for i = 2, 3, 4.

Corollary 2. Let $P = (X, Y, I_P)$ be a bipartite ordered set with $X = \{x_1, x_2, ..., x_r\}$ and $Y = \{y_1, y_2, ..., y_s\}$ and let \mathcal{F} be a realizer of P with $|\mathcal{F}| \geq 2$. If there are $F_1, F_2 \in \mathcal{F}$ such that $R(F_1) \cap R(F_2) = \emptyset$ and $C(F_1) \cap C(F_2) = \emptyset$, then

$$\dim(P) = \dim_I(P).$$

Proof. By rearranging the indices of the elements of X and Y, we can get a lower left cover $\{F_1\}$ such that $C(F_1)$ is a C_1 -set and $R(F_1)$ is an R_1 -set, and similarly we also can get an upper right cover $\{F_2\}$ such that $C(F_2)$ is a C_2 -set and $R(F_2)$ is an R_2 -set. Hence, we conclude from the main theorem that $\dim(P) = \dim_I(P)$.

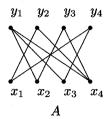


Figure 3

Example. Let A be a bipartite ordered set with $X = \{x_1, x_2, x_3, x_4\}$ and $Y = \{y_1, y_2, y_3, y_4\}$ (see Figure 3). Then there is a realizer $F = \{F_1, F_2, F_3\}$ of A such that $F_1 = \{(x_1, y_1), (x_1, y_3)\}$, $F_2 = \{(x_2, y_2), (x_3, y_2), (x_3, y_3)\}$, and $F_3 = \{(x_2, y_4), (x_4, y_4)\}$. Thus we see that

$$R(F_1) \cap R(F_3) = \emptyset$$
 and $C(F_1) \cap C(F_3) = \emptyset$.

It also follows from Corollary 2 that $\dim(A) = \dim_I(A) = 3$.

References

- [1] B. Dushnik and E. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
- [2] K. Reuter, On the dimension of the Cartesian product of relations and orders, Order 6 (1989), no. 3, 277-293.
- [3] E. Szpilrajn, Sur l'extension de l'order partiel, Fund. Math. 16 (1930), 386-389.
- [4] W. T. Trotter, Stacks and splits of partially ordered sets, Discrete Math. 35 (1981), 229-256.
- [5] R. Wille, Tensorial decomposition of concept lattices, Order 2 (1985), no. 1, 81-95.

DEOK RAK BAE
DEPARTMENT OF MATHEMATICS
SOGANG UNIVERSITY
SEOUL 121-742, KOREA

JEH GWON LEE
DEPARTMENT OF MATHEMATICS
SOGANG UNIVERSITY
SEOUL 121-742, KOREA
E-mail address: 1jg@sogang.ac.kr