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DIMENSION AND INTERVAL DIMENSION OF
CERTAIN BIPARTITE ORDERED SETS

DEOK RAK BAE AND JEH GWON LEE

ABSTRACT. We consider the dimension and interval dimension of bipar-
tite ordered sets and provide a sufficient condition for when the two pa-
rameters are equal.

1. Introduction

Let X be a set. An order R on X is a reflexive, antisymmetric and transitive
binary relation on X. Then P = (X, R) is called an ordered set. For a,b € X,
we usually write a < b for (a,b) € R and also a < b when a < b and @ #b. In
this paper, we assume that every set is finite. An order R on a set is called an
extension of another order S on the same set if $ C R. An order R is linear if
(a,b) € R or (b,a) € R for any a,b € X. Szpilarjn {3] showed that any order
has a linear extension and that the intersection of all linear extensions of an
order is the order itself. Dushnik and Miller [1] later defined the dimension of
an ordered set P = (X, R), denoted by dim(P), to be the minimal cardinality
of a family of linear extensions of R whose intersection is R itself.

An incomparable pair (a,b) in an ordered set P is called a critical pair if
z < a implies £ < b and £ > b implies ¢ > a. It is well known that the
dimension of ordered set P is the least positive integer ¢ for which there exists
a family R = {L1, Lo, ..., L;} of linear extensions of the order of P reversing
all critical pairs in P. An ordered set P = (X UY, Ip) is bipartite if X and ¥’
are disjoint nonempty sets and Ip is an order on X UY such that 0 # {(z,y) €
Ip | 2 # y} € X xY. In [4], Trotter defined the interval dimension of a
bipartite ordered set P, denoted by dim;(P), as the least positive integer ¢
for which there exists a family R = {L1, Lo,..., L} of linear extensions of
the order of P reversing all critical pairs only in X x Y. Hence the interval
dimension of P is quite easier to compute than the dimension of P in some
cases. However, Trotter [4] has shown that dim(P) — 1 < dim;(P) < dim(P)
for any bipartite ordered set P. In this paper, we find a sufficient condition for
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a bipartite ordered set P to have
dim{P) = dim;(P).

2. Preliminaries

Let G and M be nonempty sets. We define a context as a triple (G, M, I)
with I C G x M (see [5]). A subset F of G x M is called a Ferrers relation if
g1Fmy and goF'mgy implies g1 Fmg or goF'my for g1,92 € G and my,me € M.
For a Ferrers relation F in G x M, we define

C(F)={g€G|(g,m) € F} and R(F) = {m € M | (g,m) € F}.
Forge Gandme M, let
gF={meM|(g,m)€ F} and Fm={g€G|(g,m) € F}.
Now observe that
(i) gFCgForgF DgFforgg €@,
(i) Fm C Fm' or Fm 2 Fm' for m,m € M.
The Ferrers dimension of a context (G, M,I), denoted by {dim(G, M, I), is
defined to be the smallest number of Ferrers relations Fy, Fs,... ,F,,inGx M
with I = [ F;. Observe that the complement of a Ferrers relation in G x M
is again a Ferrers relation in G x M. Therefore, one can alternatively define
fdim(G, M,I) as the minimum number of Ferrers relations Fi, Fs, ..., F, in
G x M such that (G x M) — I = |JF;. For better visualization we shall use
this alternative definition throughout this paper.
Let P = (X, R) be an ordered set. Then (X, X, R} is a context and it is well
known (cf. [2]) that
dim(P) =fdim(X, X, R).
Similarly, if P = (X UY, Ip) is a bipartite ordered set, then (X,Y, Ip) is also
a context and it can be easily seen that
dim;(P) =fdim(X,Y, Ip).

For instance, considering the bipartite ordered set P = (X UY, Ip) in Figure 1,
we can find three Ferrers relations in X x Y to show that dim;(P) = 3 as in
Table 1.

Y1 Y2 Y3 Y4 X\Y [y vz ]
Ty F1 0 o
2 FI{F O
I3 O O F2
T4 O o o F3

Q|Q|QfF

X1 X2 I3 X4

P Here O means an order relation
Figure 1 Table 1
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To state our main result in the next section, we need some definitions. Let
P = (X UY, Ip) be a bipartite ordered set. Throughout this paper we consider
X ={z1,22,..., 2.} and Y = {y1,¥2, ..., ys} with fired indexing. For a Ferrers
relation F' in X x Y, a nonempty subset {z;,,T;,,...,;,, } of X is called a C}-
set of F' if

T, F D, F DDz Fwithip >ip> > im,
a nonempty subset {y;,,v;,,...,y;,} of Y is called an Ry-set of F if
Fy;, 2 Fy;, 2 -+ 2 Fy;, with ji < ja < - < ju,
a nonempty subset {z;,,z;,,...,x;, } of X is called a Cs-set of F if
POz D Dy Fwith i) <ig < -+ <,
and a nonempty subset {y;,,y,,...,¥;.} of Y is called an Ry-set of F if
Fyj, 2 Fyj, 2 -+ 2 Fyj, with j1 > j2 > -+ > jn.
A family F of Ferrers relations in X x Y called a (optimal) realizer of P if
|F| =fdim(X,Y, Ip) and Upcr F = X xY —Ip. Let £ be a nonempty subfamily

of a realizer F of P. We say that & is a lower left cover of F if for each F € €
there exist a C1-set X and an Ri-set Yy of F such that for some k and !

UXF = {xk7$k+1;---7$r} and UYF = {y17y27~"7yl}'
Feg& Feg&

Similarly, we say £ is an upper right cover of F if for each F € £ there exist a
Cs-set X and an Ry-set Yy of F such that for some k and [

UXF = {.’L‘l,xg,...,l'k} and U YF = {yl»yl—i-l,“-,ys}-
Fee Feg
Finally, for a Ferrers relation F in X x Y, let
F= U {(Zw,Yo) | K <uand v <1}
(zxy)EF

and

F= |J {@uw)lu<kandl <o}
(zr.y1)EF

3. Main theorem

In this section we prove the following main theorem.

Theorem. Let P = (XUY, Ip) be a bipartite ordered set with X = {z;, 2, ...,
.} and Y = {y1,y2,...,ys} and let F be a realizer of P. Suppose that there
are a lower left cover F1 and an upper right cover Fo of F with F1NFy =
such that (N F N () F=0. Then

FeF; FeF,

dim(P) = dim;(P).
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Proof. Since dim;(P) < dim(P), it is enough to show that dim(P) < dim;(P).
For each F € Fi, let

Hp = FUFx UFy U Fy,

where

(i) Fx is a maximal Ferrers relation in X x X with the property that
Fx C {(wi,xj) € X x X |i>j} and that 2F C ' F = ¢Fx C « Fx
for z,2’ € X,

(iiy Fy is a rnax1mal Ferrers relation in Y x Y with the property that
Fy C {(yu,yv) €Y xY |u>v} and that Fy C Fy = Fyy C Fyvy
for y,y €Y, and

(iii) Fo ={(y,2) | (z,y) € X xY - F}.

For each F' € F3, let
Hp =FUFy UF, UF,,
where

(i) Fy is a maximal Ferrers relation in X x X with the property that
Fy C {(zi,z;) € X x X |i < j} and that zF C ¢ F = 2Fy C & Fy
for z,2' € X,

(i) F;, is a maximal Ferrers relation in Y x Y with the property that
Fy C{(Wu,%) €Y XY | u < v} and that Fy C Fy = Fyy C Fyy/
fo/r v,y €Y, and _

(iil) Fo={(y,2)|(z,y) € X xY - F}.

We shall prove that Hy and Hy. are Ferrers relations in (X UY) x (X UY).
Since the case for H;; can be treated similarly, we only show that each Hp is
a Ferrers relation in (X UY) x (X UY). .

Let Xr = {2, %iy,... L, } With iy > 42 > -+ > iy and Yr = {yj, Yjas - -
Yj. } with j1 < ja2 < --- < j, which are a C;-set and an R;-set, respectively, of
F. Now we have the following useful observations:

(1) zFx ={z1, 2,..., x¢—1} ifand only if t € {2, 3,..., i — 1, im,-- .,
12, 11 ¢.

(2) If z; i C(F), then z;Fx = x;, Fx for some z;, € X with i; <.

(38) If zF D x;, F for some z;, € Xp, then zFx 2 zi,_ Fx.

(4) If t > i, then z:Fx D z;, Fx.

(6) (Fx UFy)z; 2 (Fx UFp)z; foralli,jwithl1<i<j<r.

(1) Fyy, = {Yw+1, Yw+2;- - - Ys} if and only if w € {1, j2,- .-, Jn, jn + 1,
jnt+2,..., 81}

(2) If y; € R(F), then Fyy; = Fyy;, for some y;, € Yr with j, > j.

(3) If Fy > Fyj, for some y; € Yr, then Fyy 2 Fyy;, _,.

(4), If w < jn, then Fyy, 2 Fyy;,.

(5)" yi(Fy UF) Cy;(Fy UF) foralli,j with 1 <i< j <s.
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Clearly, F U Fx and F U Fy are Ferrers relations in (X UY) x (X UY).
From (5) and (5)/, we see that Fx U Fy and Fy U Fy are also Ferrers relations
in (XUY) x (XUY). Then it remains to show the following two cases:

(1) I (z,z') € Fx and (y,y) € Fy, then (y,z') € Fy or (¢,y') € F.

(M) If (y,z) € Fy and (z',y') € F, then (z',z) € Fx or (y,y ) € Fy.

To see (I), suppose that (z;,z;) € Fx and (yu,yv) € Fy but (yu,z;) ¢ Fo.
Then we have ¢ > j, u > v and (z;,y.) € F. Further, we know that there are
zr € Xp and y, € Yr with j < k <14 and v < w < u such that 2, Fx = 2 Fx
and Fyy, = Fyy,. Since (z;,v,) € F, it follows that there is a pair (z,,y,) €
F with p < j and ¢ > u. Now p < k and so z;Fx = zpFx D z,Fx whence
(xi,yq) € F. Similarly, since v < w < u < ¢, we have Fyy, = Fyyuw D Fyyq.
Hence (z;,y.) € F, as desired.

To see (IT), let (yy,zy) € Fy and (z,/,y, ) € F. Since U > i or U < i, it
follows from (4) that if « < 4,, or v > jn, then (z,/, %) € Fx or (v, 9, ) € Fy,
we are done. Now we may assume that there are «;, € X and y;, € Yr such
that

ip Su<ip—1andj, <v < fga-
Then we have the following three cases to consider.
Case 1. v < u and v <.

Since u’ < u, it follows that (z,,%u) & Fx. Suppose that (y.,y, ) ¢ Fy.
Then y,, ¢ Yr and hence there is an element y;, € Yr with j,11 < jy such
that

(6) Fyyy = Fyyj, © Fytjen C Fryj,.

Since y,/,Yj,.1 € R(F), it follows that Fy, , C Fy;,,, or Fy , D Fyj;,,,. If
Fy, C Fy,,.,, then (z,,y;,,,) € F. Since v < wand v < jei1, we have
(Zu,yy) € F, which is a contradiction. If Fy, D> Fy,,,,, then Fyy, 2 Fyy;,
by (3), which contradicts to (6).

Case 2. u<u and v <v'.

This case can be done by a similar method to the preceding case.

Case3. u<u and v < wv.

Suppose that (z,,2,) ¢ Fx and (yy,y,) ¢ Fy. Then z, ¢ Xr and
Y, ¢ Yr and so there is z,, € Xp with w < i, such that

(M) z, Fx =x,Fx C 2, Fx

and there is y,, € Yp with j,+1 < w' such that

(8) Fyy, = Fyy, C Fyyj,,,-

€ R(F), it follows that
z,FCx,Forx FDua,F

Since z,/,2;, € C(F) and y,/,y;

q+1
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and
Fy, C Fy;,,, or Fy, D Fy;,.,.

Ifz,F >z, ForFy,DFy;_,,thenz Fx 2z, Fx D z;, Fx or Fyy, 2
Fyy;, > Fyy;,,, by (3) and (3)', which contradicts to (7) or (8). Thus,
z,F C z; F and Fy,, C Fy;_,,, whence (z:,,¥,’) € F and so (2i,,Yj,.,) € F.
Since ip < w and v < 41, we have (zy,¥,) € F, which is also a contradiction.

Consequently, Hr is a Ferrers relation in (X UY) x (X UY).

By the hypothesis, if (z,y) € X x Y, then (z,y) ¢ F for some F' € F; or
(z,y) ¢ F for some F € F», which implies that

yxxc |JRu R
FeF, FeFs

Since F, and F, are a lower left cover and an upper right cover, respectively,
of F, there exist a Ci-set Xr and an Ri-set Y of each F € F; for some k and
I such that

U XF = {xk}xk-l-la"',z’l‘} and U YF = {yl’y2""7yl}’
Fer, Fer

and there exist a C-set X;, and an Rs-set Yliﬂ of each F € F> for some k' and
! such that

U Xp= {z1,22,...,2, } and U Yy = W vy Ys)
FerFrs FeFz
Hence we can see from (1) and (1) that
X x X = {(zi@) [ 1< <P UIY x Y = {(u,3) | 1< 5 < 5)]
¢ U Fxur)u |J FxuF),
FeF: FeFz
and so
U Hru | Hru (JIFeF - (AUR)}=(XUY) X (XUY)-Ip.
Fer FerFz
Thus dim(P) < dim;(P), as desired. O

4. Corollaries and examples

In this final section we have two simple corollaries and some examples as
applications.

Corollary 1. Let P = (X UY,Ip) be a bipartite ordered set with X =
{z1,22,...,2+} and Y = {y1,¥2,...,ys} and let F be a realizer of P. If there
are a lower left cover F1 and an upper right cover Fa of F such that Fy NE; =0
for some Fy € F1 and Fy € F3, then

dim(P) = dim(P).
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Examples. A bipartite ordered set P = (X UY,Ip) is t-interval irreducible
for some t > 2, if dim;(P) = ¢ but dim;(P — {u}) = ¢ —1 for every u € X UY.
In [4], it is shown that Pi, Py, P; and P, are 3-interval irreducible ordered sets
(see Figure 2).

Y Y2 Y3 Ys+ Ys Vs Y1 Y2 Y3 Ya Ys Ys
1 X9 T3 X4 ry X T3 T4
P1 P2
Y Y2 Y3 Ya Ys Y1 Y2 Ys Ya
1 X2 XT3 T4 Ty Tr1T T2 X3 T4 Th
P3 P4
Figure 2

Consider the 3-interval irreducible ordered sets Py with X = {1, z2,%3,24}

and Y = {y1, Y2, Y3,Y1,Y5,Ys}. Then there is a realizer F = {Fy, F3, F3} of P,
such that

Fy = {(z3,92), (24, y2), (T4, 3), (T4, 95)},
F2 = {(x27y1)7 (1'373/1)3 ($47y1), (373,214)}7
Fy = {(z1,y3), (21, y4), (x1,95), (€1, ¥6), (€2, Y5), (€2, Ys), (£3,Y6) }-

Thus we see that { F1, F>} is a lower left cover and { F3} is an upper right cover of
F. Since FANF3 = §, it follows from Corollary 1 that dim(P;) = dim;(P;) = 3.
Similarly, we can see that dim(P;) = dim;(P;) = 3 for ¢ = 2, 3,4.

Corollary 2. Let P = (X,Y,Ip) be a bipartite ordered set with X = {xz1,
Z2,..., Zr} andY = {y1,y2,...,ys} and let F be a realizer of P with | F |> 2.
If there are F1,Fy € F such that R(F1) N R(F2) = 0 and C(F1)NC(F3) =0,
then

dim(P) = dim;(P).

Proof. By rearranging the indices of the elements of X and Y, we can get a
lower left cover {F1} such that C(F}) is a Ci-set and R(F}) is an Ri-set, and
similarly we also can get an upper right cover {Fs} such that C(Fz) is a Co-
set and R(Fy) is an Ra-set. Hence, we conclude from the main theorem that
dim(P) = dim,(P). O
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Y1 Y2 Ys Ya

r1 X2 T3 X4
A
Figure 3

Example. Let A be a bipartite ordered set with X = {z1,%2,%3,24} and
Y = {y1,Y2,y3,y4} (see Figure 3). Then there is a realizer F' = {Fy, F», F3}

of A such that Fy = {(z1,91), (z1,93)}, Fo = {(z2,92), (*3,%2), (z3,¥3)}, and
F3 = {(x2,y4), (z4,9y4)}. Thus we see that

R(Fl) ﬂR(Fg) =0 and C(Fl) n C(F3) ={.
It also follows from Corollary 2 that dim(A) = dim;(A4) = 3.
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