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A NOTE ON THE GENERALIZED MYERS THEOREM

JoNG-GUG YUN

ABSTRACT. We provide a generalized Myers theorem under integral cur-
vature bound and use this result to obtain a closure theorem in general
relativity.

1. Introduction

One of the most important results in global Riemannian or Lorentzian geom-
etry is Myers theorem, which says that if a complete Riemannian manifold M
satisfies Ric(v,v) > (n — 1)a > 0 for all unit vectors v, then M is compact and
diam(M) < % We can find various kinds of generalizations and variations of
this theorem in [2, 3, 4, 5, 6, 8, 9, 10, 11].

In particular, C. Sprouse [11] obtained that for a complete Riemannian man-
ifold with (nonpositive) lower Ricci curvature bounds, one has bounded diam-
eter provided that the Ricci curvature below some positive constant is small

in a suitable integral sense. The precise statement of the result in [11] is the
following

Theorem 1.1 ([11]). Let (M, g) be a complete Riemannian manifold of dimen-
sion n satisfying Ric(v,v) > —a(n — 1) for all unit vectors v and some a > 0.
Then for any R,8 > 0, there exists € = €(n, a, R, §) such that if

1
S vol(B(z, R))

then M is compact with diam{M) < 7+ 6.

/ max{(n — 1) — Ric_(z),0}dvol < €(n,k, R, ),
B(z,R)

Here, Ric_(z) is the lowest eigenvalue of the Ricci tensor, Ric(z).

Theorem 1.1 indeed generalized some of the previous results which are re-
lated to Myers theorem.

In this paper, we use the line integral of the ‘bad’ part of Ricci curvature to
obtain the same conclusion of the above theorem without any assumption on
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the pointwise lower bound of Ricci curvature. We also need not take average
of the integral over metric balls.
So our main theorem is the following

Theorem 1.2. Let (M, g) be a complete Riemannian manifold of dimension n.
Then for any 6 > 0,a > 0, there ezists an € = €(n, a, §) satisfying the following:

If there is a point p such that along each geodesic v emanating from p, the
Ricci curvature satisfies

/000 max{(n — 1)a — Ric(vy'(t), 7' (), 0}dt < €(n, a, d),

then M is compact with diam(M) < % + 6. Here, €(n,a,d) can be expressed
explicitly in terms of n,a and 6.

The proof of Theorem 1.2 depends basically on the Riccati equation for the
mean curvature of the metric balls centered at p. Recall that in the Lorentzian
case, we have a similar Riccati-type formula which is called Raychaudhuri equa-
tion in general relativity. So, by using the similar arguments, we may also prove
the following

Theorem 1.3. Let (M,g) be a globally hyperbolic spacetime. Then for any
6> 0,a > 0, there exists an € = €(n, a,8) satisfying the following:

If there is a point p such that along each future directed timelike geodesic ~y
emanating from p with I(v) = sup{t > 0 : d(p,¥(t)) = t}, the Ricci curvature
satisfies

1)
[ max{(n ~ 1)a~ Rie(s'(0),/(9), 0}t < e, a,),
A .
then we have diam(M) < % + 4.

Remark. For the precise definition of ‘global hyperbolicity’ and ‘diameter’ of
a spacetime, we refer to chapter 11 in [1]. Here, we just note that () can be
interpreted as the “largest” parameter value ¢ so that v is the unique maximal
geodesic between (0) and ~(t). We also note that Theorem 1.3 generalizes the
classical result where one assume the pointwise lower bound of Ricci curvature
(see Theorem 2.3 in [9] or p. 405 in [1]).

Using Theorem 1.2, we also obtain a closure theorem analogous to that of
[7] as follows.

Let M be a static spacetime with a spatial hypersurface V which is a Rie-
mannian manifold with the induced metric from M. Then the unit tangent vec-
tors to the future directed timelike geodesics orthogonal to V define a smooth
unit timelike vector field T' in a neighborhood of V. As indicated in [7], all
integral curves of T represent the worldlines of the inertial observers who start
from V simultaneously, since V is their common “rest space”.

Let X be a vector in T,V and extend it along the normal geodesic ¢ through
p by making it invariant under the flow generated by T (see p. 814 in [7] for
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details). Then, the vector field v(X) = V7X and a(X) = VrVrX along ¢
is the “3-velocity” and “3-acceleration” of X , respectively. This means that
(v(X),X) > 0 (resp. < 0) implies the recess (resp. approaching) of nearby
inertial observers in the direction of X and that (a(X),X) < 0 indicates a
deceleration of the recess or the approaching in the direction of X. We also

introduce © = divT which measures the average rate of expansion of the normal
geodesics.

We now state our closure theorem as follow.

Theorem 1.4. Let V be a spatial hypersurface in M and assume that V is
complete in the induced metric. Then for any 6§ > 0,a > 0, there exists an
e = e(n, a,d) satisfying the following:

If there is a point p in V such that along each geodesic y in V emanating
from p, the condition

/ max{(n — 1)a — Ric(X, X) + (v(X), X)O + (a(X), X),0}dt < €(n, a,6),
0
is satisfied, where X = ~/(t), then V is compact and diam(V') < 7t 3.

2. Proof of Theorem 1.2

For a point p in M and along a geodesic v : [0,00) — M with y(0) = p, we
first divide [0, 00} into two parts E; , E2 as follows.
For any small positive € (< a?) (to be determined later), let

Ey = {t € [0,00) : Ric(y'(8),7'()) = (n — 1)(a = Ve)},
Ey = {t € [0,00) : Ric(v'(t),7'(t)) < (n —1)(a = Ve)}-
Then we have

€> /000 max{(n — 1)a — Ric(v'(t),~'(t)),0}dt

> [ {(n—1)a—Ric(y'(t),7'(t))}dt

E2

> [ {(n=Da-(n-1)a—ve)dt

E2
= H[EQ](TL - 1)\/;
where p is the usual measure on R. Thus we obtain

Ve

n—1"

plEs] <
Now recall that the mean curvature function h defined by h(z) = (Ar)(z),
where r(z) = d(p, x) satisfies the following inequality:
h2

h+

D < —Ric(y'(),7' (1)),
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where B’ = £h(y(t)). So on E1, we have
; (o .
| Vo + ( St
On the other hand, on E; we can estimate the following:
(25) o ZRic(y'(®),7'(#)/(n — 1) — ()

(a-va+Gh)?~ (a—vo) + (3292

(a — ve) — Ric(¢'(¥),7'(#))/(n — 1)
(@ = Ve + (327)?

< (o= ve) — Ric(y'(t), v'(t))/(n — 1)
(a-ve)

Thus, we have for 0 < r < oo,

" n—l) (n_l)l
| @—vo+(Epr= /HE @ vo+(Er”

()
i /[0,’”]“52 (a—+ve)+ n—l)2 *

< 4/[(),r]r1E1 —1dt
+/ (a—ve —Ric(/'(t),y'(#)/(n - 1) ,,
[0,r]NE:

(a— e
< —u{[Or]ﬂE}ﬂLé/(nf)
= —r+,u,{{07"]ﬂE}—|»€/(n\/£)
< —r+nfl+ {l(_?/.:).

If we let T(€) = ?zﬁl‘ + M then the above inequality can be rewritten as

follow:

nt) dt < —r+7(e).

0 (a"\/_)+ n..l)z

The integral of the left hand side can be computed explicitly and we therefore

have
1 h(y(r))
e arctan ((n — 1)a(e)) < —r+71(e),

where a(e) = v/a — /e
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Now it is easy to check that taking “tan” on both sides for 7(¢) < r <
atg +7(€), we have

h(y(r)) < (n — 1)a(e) cot{a(e)(r — 7(€))}-

Since cot{a(e)(r — 7(c))} goes to —oo as v — 75 + 7(€), we know that
h(y(r)) goes to —oo before r = % + 7(€). This means that + should have
a conjugate point (with respect to y(0)) before a5 T 7(€) and so cannot be
minimal beyond 7= +7(¢).

Furthermore, we note that ﬁ +7(e) | % as € — 0. Thus for any given
6 > 0, we can choose an € explicitly so that 7 + 7(e) = 7 + 0 and this
completes the proof.

3. Proof of Theorem 1.3

Let € = ¢(n, a, §) be the explicit constant appearing in the proof of Theorem
1.2 and suppose that diam(M) > % + 6. We may then find p, ¢ in M with
d(p,q) > \/La——i-& by definition of diam(M). Since M is globally hyperbolic, there
exists a maximal timelike geodesic segment + joining p and q. We also know
that I() > = + 6 by definition of /(). Now recall that we have the following

Raychaudhuri equation along v as follow (cf. p. 48 in [3]):
2

n—1

where 6 is the expansion tensor and o is the shear tensor along 7.

From this equation, we have a similar inequality as in Riemannian case:

0 - < —Ric(y'(t),7'(t)).

0 + +Ric(v'(1),7'(t)) +tr(c?) =0,

o+

Thus, using the same arguments as in the previous section, we may obtain
that 6 goes to —oo before 7= + 4. This, in turns, means that v should have a

conjugate point (with respect to v(0)) before 7z 10 and so cannot be maximal

beyond 7= + 4. But this contradicts the fact ! (v) > vzt d and we complete
our proof.

4. Proof of Theorem 1.4

By a standard computation (cf. [8]), we may find that for any unit vectors
X € T,V, we have

Ricy (X, X) =Ric(X, X) — (a(X), X) — (v(X), X)©
+ (V(X), X)? + (u(X), €2)” + (v(X), e3)?,

where Ricy is the Ricci tensor of V' in the induced metric and {X, e3,e3} is an
orthonormal frame in T, V.
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From this, we have the following inequality.
(n —1)a - Ricy (X, X) < (n — 1)a — Ric(X, X) + (a(X), X) + (v(X), X)6.

Combining this inequality with Theorem 1.2 gives the desired result.
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