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GENERALIZED GOTTLIEB SUBGROUPS
AND SERRE FIBRATIONS

JAE-RyonG Kim

ABSTRACT. Let 7 : E — B be a Serre fibration with fibre F. We prove
that if the inclusion map i : F — E has a left homotopy inverse r and
m: E — B admits a cross section p: B — E, then G, (E,F) = m,(B) @
Gn(F). This is a generalization of the case of trivial fibration which has
been proved by Lee and Woo in [8]. Using this result, we will prove that
T X4) 2 7 (X) & Gn(F) for the function space X4 from a space A to
a weak Hu-space X where the evaluation map w : X4 — X is regarded
as a fibration.

1. Introduction

D. H. Gottlieb [1, 2] introduced and studied the Gottlieb subgroups G, (X)
of m,(X), which is defined to be the set of all elements o €m,(X) for which
there is a representation map f of o and an affiliated map F : X x §® — X of
type (1x, f) ; that is Flx =1x, Flgn = f.

Let X4 be the space of all mappings from A to X with the compact open
topology in the category of spaces which are homotopy equivalent to CW com-
plexes. It is well known that if X is a (pointed) CW complex and A is a finite
(pointed) CW complex, then X4 has the homotopy type of a CW complex. If
@, € A is a base point, the evaluation map w : X# — X given by w(f) = f(a,)
is continuous.

Gottlieb [2, Proposition 1-1] proved that if X is a CW complex, then

w*(ﬂ-n(XX7 1X)) = Gn(Xv -'L‘o),

where z, is the base point of X. Varadarajan [12] generalized G1(X) to
G(A, X) for any space A and called the maps f : A — X represented by
elements of G(A, X) cyclic. In other words, f : A — X is said to be cyclic if
there exists a map F': X x A — X such that Fj ~ (1V f), i.e., the following
diagram is homotopy commutative:
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F

XxA = X
il /S vV
XV A.

Since j : X VA — X x A is a cofibration, this is equivalent to saying that we
can find amap G : X x A — X such that Gj = s7(1V f). Such a map G is said
to be an associated map of f. The set of all homotopy classes of cyclic maps
from A to X is denoted by G(A, X) and called the Gottlieb subset of [A, X].

2. The generalized Gottlieb subgroups
Kim and Woo [6] gave a generalization of the Gottlieb subgroups G (X).
Definition. The generalized Gottlieb subgroups G¥ (X, A4, z,) are defined by
GH(X, A,20) = Im(w, : 7a (X4, f) = (X, 0)),
where w : X4 — X is the evaluation map from the function space X4 to X and
f:A— X isagiven map. G{(X, A, z,) of m,(X,z,) consists of all elements a

€mn (X, x,) for which there is an affiliated map F : A x §™ — X with F|4 = f
and F|gn = o

The elementary properties of the generalized Gottlieb subgroups can be
found in [5], [6], and [8].

Theorem 2.1. If the fibration p : X* — X admits a cross section o : X —
XA, then GL(X, A) = m,(X) forn > 1.

As a corollary, we can compute the homotopy groups of some function spaces.
Corollary 2.2. Let X be an H-space. Then
' Tn(X5") 2 1 (X) @ Tpag(X),n > 1.

We will use Theorem 2.1 to find a quite similar equation about the function
space X4 instead of X5° in Corollary 2.2.

3. Exact sequences of the generalized Gottlieb subgroups

In the sequel, we will use the notation * to denote the base point of any
spaces. All spaces are assumed connected CW complexes. In [9] and [10], Lee
and Woo have introduced the subgroups GZe(X, A) of the relative homotopy
groups m,(X, A) which are defined by the image of wy : T, (X4, A4,i) —
7o (X, A, *). Equivalently, GE! (X, A)={a € 7,(X,A) | 3 map H : (X x
I", A x 8I™) — (X, A) such that [H |sxi»] = @ and H |xxu=1x for u € J*!
for n > 2}. Here J™! is the union of all n — 1 faces of I"™ except for the initial
face. Notice that GF¢ (X, A) need not to be a group.

The inclusion map i : A — X and the evaluation map w induce the following
commutative diagram
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2 1 (XA, AN <D ma (A% L (XA —
l Wi l Wi l Wy
I, GReL(x, A) -2, @A) = X, A
= G (X, A) —  Gr(A) = Gu(X, A) —

n n n

I a1 (X,4) 5 m(A) 2 (X)) — -

where the top and the bottom rows are exact.

The middle row will be called the G-sequence of the CW-pair (X, A).

Lee and Woo [10] have given some conditions under which the G-sequence
becomes exact. For example, if the inclusion 7 : A — X has a left homotopy

inverse or is homotopic to a constant map, then the G-sequence is exact. Lee
and Woo [8, Theorem] also proved that

Theorem 3.1. Let F -5 F x B 5 B be a trivial fibration. Then
Gn(F x B,F) 2 m,(B) ® Gn(F).

This result was generalized by Hirato, Kuribayashi, and Oda [4] from the

viewpoint of rational homotopy theory. In [4, Theorem 1.6], the authors estab-
lished the following.

Theorem 3.2. Let F 5 X 5 Y be a separable fibration of connected rational
spaces with dim ®>0HI(F : Q) < oo or dim @;>om(X) ® Q < co. Suppose
that F is simply-connected and m;(Y) acts on H'(F : Q) nilpotently for any i.
Then the sequence

0= Go(F) % G (X, F) 2 1 (Y) = 0
is exact forn > 1.

Theorem 3.2 motivated us to consider the generalization of Theorem 3.1 to
the Serre fibrations.

4. Serre fibration

Definition. A map 7 : E — B is called a Serre fibration if it has the homotopy
lifting property with respect to I"™ for each n > 0.

Every locally trivial bundle 7 : E — B is a Serre fibration.
Let 7 : E — B be a Serre fibration. Choose x € E and * = 7(x) € B. Let
F = 771(*) be the fiber. Thus 7 induces a map 7 : (E,F) — (B, x).

Theorem 4.1. Let 7 : E — B be a Serre fibration. Assume that F\E, B
are CW -complexes. Then the induced morphism 7. |grei(p F): GRUE,F) —
7n(B) is a 1-1 correspondence (isomorphism for n > 2).
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Proof. Since the map « induces a 1-1 correspondence

Ty : T (B, F) — m,(B),
it is sufficient to show that 7. |gre (g, py: GH(E, F) — m,(B) is onto. Let
[f] € mn(B). Then f : (I",8I™) — (B, *) is a continuous map of pairs. Let
g:J" ! — E be the trivial map g(z) = * € F for all z. Then the diagram

gL F
i im
I 4. B

commutes. Hence by the condition of Serre fibration [3, Proposition 11.7}, we
can have a lifting ¥ : I" — E with n.([¢]) = [f] such that ¥(8I") C F,
P(J* L) = . Let ¢ : (I", "1 x 0) = (I",J"!) be the homeomorphism
defined in [3, Lemma 11.6].

Define a map

P:Fx(0,0,...,0)x ITUxx "' xI > E
by
P(e, (0,0,...,0),8) = e, P(x,u,1) = Pip(u, 1),

where (0,0,...,0) € I"1,((0,0,...,0),0) € J* L. Since p(dI™) = dI™ and
Po(u,0) € P(J* 1) = {x} for (u,0) € I"! x 0, o(x x 8I") C F and
P(*,u,0) = *.

Consequently we have that 1 is well-defined and continuous by the pasting
lemma. If we consider a map ¥y : F x I" 1 x0 = F x I"! — E defined by
1o(e, u,0) = e, then we have the following commutative diagram

Fx I o, E
i T7e
Fx(0,...,0)U*x " 2, g
where ¥* is adjoint of ¢ and 75 (w) = w(0). Since (FxI"" 1, Fx(0,...,0)Lxx
I"~1) is a CW-pair, it has the absolute homotopy extension property. Hence we
have an extension ¢ : F x I"~! x I — E whose adjoint F* : F x [*~' — E!
commutes the diagram:
Fxm! — E
1 NT Tmp
Fx(,...,00uxx/m!' X EL
Using this extension ¥F, we can define a new map
PP P xI" I x IUEXxI"!x0—E
by B
PP pxrn-1xr = ¥F, 97 pxrn-1xo(e; u,0) =e.
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Then Y|y rn-1 4o = . Hence ¥F is also well-defined and continuous. Since
(ExI™1 Fx 1" 1) is a CW-pair, it has also the absolute homotopy extension
property. Hence we get again an extension ¥ : E x I — E. And ¥(1g x
O Dlasrn =, Y(1g x o ) (F x 0I™) C F, and ¥(1g X ¢ Y)|pxu = 1g for
uw € J*! for n > 2. This implies that [¢] € G,(E, F). This completes the
proof. O

Consider the following commutative diagram:
. 8
G (B, F) —  Gu(F)
L 1

T (B) -5 m(F)

where @ is the boundary homomorphism in the homotopy sequences of the pair

(E,F) and d is the connecting homomorphism in the homotopy sequence of

the fibration F — E — B.

Since 7, : GR¢, (E, F) — mp41(B) is a 1-1 correspondence (isomorphism if

n > 1), we have
d(mn41(B)) = i0m; (T4 1 (B)) = i0(GEL (B, F)) C i(Gn(F)) = Gu(F).
Thus we have the following sequence which is a chain complex:
= Gp(F) 25 Gu(BE, F) =5 1,(B) % Gro1 (F) — -+
= Go(F) = Go(E, F) — mo(B).
This sequence will be called G-sequence of the (Serre) fibration.

Corollary 4.2. Let w: E — B be a Serre fibration with an even-dimensional
sphere S*™(n > 1) as the fibre. Assume that E, B are CW -complexes. Then
the induced homomorphism T, : wap41(E) — mani1(B) is onto.

Proof. In the exact sequence

Tont1(E) =5 Tans1 (B) —5 m2n (S7)
we have d(man41(B)) C G2,(S?"). Since G2, (5?") = 0, the homomorphism d

is trivial and this implies our corollary. O

Let 7 : E — B be a Serre fibration. Assume that F, E, B are CW-complexes
and the inclusion map i : F — F has a left homotopy inverse. Then the G-
sequence of the pair (E, F) is exact [10]. That is, the sequence

— Gu(F) 25 Go(B, F) 25 GEUE, F) 25 Gy (F) —

is exact.
Now we consider the following commutative diagram:
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— Gn(F) 2% Gu(E, F) 25 GEYE, F) % Gpoy(F) —
I I L I

= Go(F) 25 G(BE,F) I 0(B) -5 Goa(F) —
where 7, =T, 0j, and d =d o7 L.
Since the G-sequence of the pair (E, F) is exact and 7, is an isomorphism,
the G-sequence of the Serre fibration is also exact. Therefore we get the fol-
lowing Theorem.

Theorem 4.3. Let v : E-— B be a Serre fibration. Assume that F,E,B are
CW -complezes and the inclusion map i : F — E has a left homotopy inverse
r. Then the G-sequence of the Serre fibration is exact. Moreover we can derive
a monomorphism ¢ : Gop(E, F) — Gp(F) @ mn(B).

Proof. Let o € G,,(E, F), then there exists a homotopy H : F x I — E such
that

[H |sxin] =@ and H |pxyu=1 for u € OI™.
If we define H =ro H: F x I" — F, then we have
[H |«xin] = r«(a) and H |pxy= 1p for u € oI™.

Therefore r.(a) € G,(F) and we can derive a homomorphism ¢ : G, (E, F) —
Gn(F) & mp(B) defined by ¢(a) = (r«(a), Tx(c)). Now we show that ¢ is a
monomorphism. Suppose ¢(a) = (r«(c), T«(a)) = 0. Then o € Kermr, = Imi,.
By the exactness, there is a § € G, (F) such that 7.(8) = a. Thus § = r.i.(0) =
r+(0) = 0. Hence a = i.(6) = 0. O

The following Theorem 4.4 is one of the generalizations of the Theorem 3.1.

Theorem 4.4. Let w : E — B be a Serre fibration. Assume that F,E,B are
CW -complexes, the inclusion map i : F — E has o left homotopy inverse r
and 7 admits a cross section p: B — E. Then G,(E, F) = G,(F) ® m,(B).

Proof. Define I : G,,(F)@m,(B) — Gn(E, F) by Z(8,8) = i.(8)+ p«(8). Then
T is well defined. In fact, since 7, is an epimorphism, there is an o € G,(E, F)
such that 7.(a) = 8. Then p.(8)—a € Ker#, = Imi,. Hence p.(8) = a+i.(y)
for some v € Gp(F). This implies 4.(0) + p«(B) € Gn(E, F). Clearly T is a
homomorphism since i. and p, are homomorphisms. Suppose Z(§,5) = 0.
Then 0 = 7,(Z(5,)) = 7.(ix(8)) + a(p2(8)) = Fope(B) = B. Hence 8 = 0
and 7.(6) = 0. But this means § = 0 because we have exactness at G,,(F). We
now show that 7 is onto. Let o € Gp(E, F). Then 7.(a — p«7«(c)) = 0. By
exactness, there is § € G, (F) with i.(0) = a — p«7«(a). Thus a = () +
p+(Fe(@)) = T(4, 7. ()). This completes the proof. 0

Definition. We will call a topological space X an H.-space ([7, 13]) if the
following conditions are satisfied:
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(i) A continuous multiplication x - y is defined for each pair of elements in
X.
(ii) There is a fixed element * in X satisfying z-* = z for all z € X. We
shall call such element * the right identity.
(iii) To each z € X, there is an right inverse 27! € X defined continuously
by x such that - 27! = *.
(iv) For each pair of elements z,z’ in X, we have 71 - (z - 2') = 2’.

According to the definition of H,-space, the right identity * and left inverse
! of z are unique. Moreover the right inverse z~* of x is the left inverse of
z. An H,-space need not to be an H-space.

Example 1. Let X“ be the space of all mappings from A to X with the
compact open topology in the category of spaces which are homotopy equivalent
to CW complexes. If x € A is a base point, the evaluation map w : X 45X
given by w(f) = f(*) is continuous. Consequently w : X* — X is a fibration
with fibre F = w™1(x) = {g € X?|g(¥) = *} over the right identity * € X.

Theorem 4.5. Let X be an H,-space. Then the function space X*# is home-
omorphic to X x F.

Proof. Let g € X“. Then the map - g defined by (z - g)(a) = z - g(a) is
continuous. Hence z-g € X4. Clearly g =z - (z~!-g) =z~ ! (- g) for any
z € X. We shall define two maps ¢ : X4 — X x Fand 9 : X x F — X4 as
follows:

6(9) = (9(x), g(x)~"9), geX?,
’([}(17, f):xf’ CI?GX,fEF.
Now the continuity of these maps follows from the compact open topology on
the function space X [7]. Moreover we can easily find that ¢ is the inverse
map of . O

This theorem resembles the theorem of Koh [7], where he dealt function
space from the n-sphere S™ to an H,-space X.

Moreover Koh [7] has given a condition which provides that the function
space X is homeomorphic to the product space X x F. Let X = S" and
A = SP. Then the arc components of F are elements of the pth homotopy group
of X. Denote the arc component X, of X# which contains a = F,, € mp(X).
Then X4, is also a fibration over X. He proved that

Theorem 4.6. X;;‘ 18 homeomorphic to X X F,, if r = 1,3 or 7. Conversely,
if X4, and X x F;, have the same homotopy type, then r = 1,3 or 7, where
i, 18 represented by the identity map S™ — S”.

Definition. We call a space X a weak H,-space if it satisfies the conditions (i),
(i), (iii) in the definition of H,-space and the following condition (iv)’ instead
of (iv):

(iv)’ The right inverse * ™! of the right identity * is the right identity itself.
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If X is a (weak) H,-space, then we can easily find out that the function
space X4 and its subspace F are (weak) H,-spaces. Above theorem tells us
that function space X4 from A to a weak H,-space may not be homeomorphic
to the product space X x F.

Example 2. Let X = {e,,y, 2z} be a system with multiplication defined by
' e-e=e, e-T=y, e Yy=2z2 €-z2=2,
T-e=zx, TT=yY, T -Y=2, T-2=E¢,
y-e=y, Yy =2, y-y=e Yy z2=1a,
z-e=z, z-T=e, ZY=2=, 2-2=4.

This system X satisfies the conditions of a weak H,-space. But the fact that
el-(e-y)=e ' -z2=e-2z=2#y implies X is not an H,-space.

Theorem 4.7. Let X be a weak H,-space. Assume that X, A are CW -complez-
es. Then m,(X4) = Gn(XA, F) 2 G (F) ® mp(X).

Proof. Let X be a weak H,-space with right identity * as base point. If we
defineamapr: X4 — Fbyr(g) : A — X, r(g)(a) = g(a)-g(*)~!, then r is well
defined and continuous. If we define p: X — X4 by p(z) : A — X, p(z)(a) ==
for any a € A, then p becomes a cross section and it holds r o i(f) = f. Hence
the fibration w : X4 — X satisfies the assumptions of Theorem 4.4. Thus we
have Gp(X4,F) 2 Gp(F) @ m,(X). Consider the evaluation map @ : (X A)F
— X4 given by @(g) = g(x) where the function space X4 is regarded as a
weak H,-space. The trivial map * : A — % € X is the right identity of this
weak H,-space X4. Then @ : (X A)F - X4 is also a fibration with fibre
F = ©~!(x) over the right identity. By virtue of the weak H,-space X4, we
have the following continuous maps 7 : (X4)" — F and p: X4 — (X4)" such
that 74 = 15 and @p = 1x4. Hence the fibration @ : (X4)" — X4 satisfies the
assumption of Theorem 2.1. Therefore we have 7,(X4) & G,(X4, F). This
completes the proof. a .

This theorem tells us that if the fibre F is not a G-space, then the function
space X4 and the product space X x F are not homotopy equivalent.
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