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ON ELLIPTIC ANALOGUE OF THE HARDY SUMS

YI1LMAZ SIMSEK, DAEYEOUL KM, AND Ja Kyuna Koo

ABSTRACT. Main purpose of this paper is to define an elliptic analogue
of the Hardy sums. Some results, which are related to elliptic analogue
of the Hardy sums, are given.

1. Introduction, definitions and notations

We set
g=€e",7€C, |q| < 1.
The classical theta functions, ¢,(0,q) (n = 2,3,4) are defined as follows:

([14], [20], [30])

o]
92(0,q) = 2¢7 Y _ ") =2 %H (1-¢*) (1+¢™)7,
n=0 n=1

a( 0q—1+2zq :H (1—¢*) (1+¢ 1),
194(0,Q)=1+22(—1 H 1—¢*" q2n~1)2.
n=1 n=1

In the remainder of our work, we shall write ¥2(0, q), ¥3(0,q), 94(0,q) as
Y¥2(q), ¥3(q) and ¥4(q), respectively [9]. The theta series 21(/‘1 , ¥3(q), Valq)
converge on the (open) unit disk

D={g=¢" reC ld <1},
The Dedekind eta function 7 is defined by
n(z) = ewlizz H (1 _ eQﬂ'inz) ’

n=1

where z € H= {z € C: Imz > 0}. An elegant functional equation of n-function
under the modular transformation is given by of. [1]:
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Let A= [25] € I'(1), modular group. Then

(1.1)  logn(Az) =logn(z) + Ei—(?%i)-

where s(d, ¢) is the Dedekind sum defined as follows:

—mi(s(d,c) — i) + %log(cz +d),

c—1

s(dre) = 3 (),

n=1

when

0, z € Z.

(For detail see [4], [6], [15], [26], [27], [28])-
Relations between theta functions and n-function are given by (see cf. [7],
18], [21], [22], [23])

@ ={ k=% e

20°(22)
Pa(z) = ——=
) =
5
n°(2)
¥3(2) = ———~55,
) = Feare
2(z
n°(3)
da(z) = —==.
+(%) n(2)
The following identities are obtained by taking logarithms of the above
log¥2(z) = log2+ 2logn(2z) — logn(z),
(1.2) logda(s) = blogn(z) — 2logn(22) — 2logn(3),

log¥4(z) = 210g17(§) — logn(z) cf. [25].

Relations between Hardy sums and theta functions were given Berndt [5],
Simsek [25] and Berndt and Goldberg [6].

Let h, k € Z with k > 0. Hardy sums (or Hardy-Berndt sums) are defined
as follows:

k—1
S(hok) = Y (-1l

k L
sihk) = Y (-DEI(E)),
j—l
i( J hj
sah,k) = Z ~ (D),

ss(h,k) = (—1)7((==

nMar i
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k—1

sa(hk) = S (=n)l¥]

[

?

1

ss(hk) = S (-1pHEI())

=1

<.
= |l

(For detail see [5], [6], [10], [11], [19], [26], [24], [25] [29]).
Relations between Hardy sums and theta functions are given as follows:

Theorem 1.1. A= [¢ 4] €To(2), ¢ > 0. If ¢ is even and (c,d) = 1, then

1 i d
log ¥2(Az) = log ¥2(2) + 3 log(cz+d) — ﬂ-zz + i <GZ; ) — misa(d, c),

where sy(d, c) is a Hardy’s sum.

Theorem 1.2. A= [%%] €T%2), ¢> 0. Ifd is odd and (c,d) = 1, then

log ¥4(Az) = log ¥4(z) + %log(cz +d) - 1} - 7rf&;(d7 c),

where sy{(d, c) is a Hardy’s sum.

The proof of the Theorem 1.1 and Theorem 1.2 have been given by Berndt [5]
and the first author [25].

Let z = z—; =z 41y and s = o + it with z, y, o, t real. For any complex
number z, we choose the branch of logz with —7 < argz < #. Let a; and
ag be arbitrary real numbers. For z € H and o > 2, define Eisenstein series

G(z,8,a1,az) as follows;

G(Z787T17r2) - Z !

(r1,r2)#(m,n)€Z2 ((m + Tl) z4+n+ ,,.2)8 .

Let 7y = ro = 0. The above equation reduces to G(z,s), which is given as
follows;

(1.3) Gz = 3 !

0#(m,n)€Z? (m + ’I’LZ)
(For details see [16], [17]).

An alternate way of defining the normalized Eisenstein series is to sum only
over relatively prime pairs m, n in (1.3):

EeR =12 3 1

k’
2 mneZ (’I’I’L + 'I’LZ)

(m,n)=1
where (m, n) stands for the greatest common divisor and

1 2k - Tinz
E(z,k) = WG(Z, ky=1- B, Zok_l(n)e2 ,
n=1
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where By, is the Bernoulli number (cf. [1], [14], [13], [23], [30]).

2. Theorems on elliptic analogue of the multiple Hardy sums

The multiple Dedekind sum investigated by many prominent mathemati-
cians is a natural generalization of the classical Dedekind sums. In this work,
we consider papers of Zagier [31] and Egami [12]. In this section we intro-
duce elliptic analogue of Hardy sums. Our method is similar to Zagier and
Egami’s expect the use of an elliptic function in the place of the cotangent
function which appeared there. By a limiting procedure we can recover the
corresponding results on multlple Dedekind, cotangent sums.

Let 7 € Hand L. (resp. L, ) denotes the lattice 2mi(2Zr + Z) of the complex
plane. If wi,ws € L., then 2 ¢ R.

Tz)=$+;(ﬁ_$)'

From (1.3)
1
g(1) = ZF’
<1
93(T) = ZF?
and

ei(r) = p(7, 1),

where ) denotes the summation over all w € L. except the origin.

In [12], we recall that go(r) and g3(7) are modular forms for I'(1), while
e1(r) is a modular form for To(2) = {[24] € [(1): c=0(2)}.

Now we introduce the function (7, z) as follows:

z) = Vp(r,2) — ex(7), (cf. [12))
which plays the principal role throughout this paper, where e1(r) = p(7, 7).

The function ¢(7, z) is a meromorphic Jacobi form for I'y(2) of weight 1 and
index 0 by periodicity for L;, and

g =zt de(n2)

for A= [2%] € I'o(2) (cf. [12]). Furthermore ¢(r,z) has the following g-
expansion:

p(Ar,

-

(2.1) (P(T,Z)=1€§+<_ H 1+an (1+q"( )(1— )

2(5-—4' ol 1—qn<') 1_ qi— 1)(1+qn)27

where ( = e* and q = ™"

-
ml»—A (ST
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Definition 2.1 (Multiple elliptic Dedekind sums [12]). Let p be a natural
number and ay,...,a; be integers coprime to p such that p+a; +---+a; is
even. For Im(r) > 0 a multiple elliptic Dedekind sums is defined by

p—1

2miag(mT +n)
DT(p;alv"wa'j): Z mH _———_)'
m,n=(
{m,n)#(0,0)
One can easily see that D.(p;a1,...,a;) is a modular form of level p and

weight j. The reciprocity law of the sum D(p;aq,...,a;) is given by Egami
[12].
Zagier (31] defined the following multiple Dedekind sums:
p—1

i ma wma;
d(p;al,...,aj)z(—l)fZcot( pl)...( pj).
ma=1

The sum d(p;as,...,a;) vanishes identically when j is odd. The connection
between d(p;a,...,a;) and D-(p;a,,...,q;) is given as follows:

Theorem 2.2 ([12]). Let p be a natural number and ai,...,a; be integers
coprime to p. If p+ay + -+ a; 4s even, then

. 1 R A
lim DT(PQGI,--- )aj) = 2_3 {d(p;ala“~aa*j)+(_1)JPZ(_1)j+E——pL]JC\+[ ’ }}

Imr—o00
PESSN

By using the above theorem, we give some useful results in the following (for
detail see [12]):

Remark 2.3. (i) Substituting 0 < z < 1, z = 2mi(zr + y) into (2.1) the infinite
product of g-expansion (2.1) tends to 1 as Im7 — 0.

(ii)
¢GHcE -1 2>0
CF ¢ % w(:—% icot(my), = =0.
(iil) By using (i) and (ii), we have
( )1+ , @ ¢ 7
(22) Iml}-I—I»l olr, 2mifzT +y)) = { 3 cot(my), =€

For z ¢ Z, Fourier expansion of imiy, 0o ©(7, 2mi{zT + y)) is given by the
following lemma.:

Lemma 2.4. If x ¢ Z, then

lim o7, 2ni{zT +¥y)) = ——

Imr—o0

Proof. Substituting
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into (2.2), we have the desired result. a

By using Lemma 2.4, we define new sum related to functions ¢(7, 27i(x7+y))
as follows:

Definition 2.5. Let a, b be coprime natural numbers. For Im7 > 0, the sum
" B(a,b) is defined by

b—1
B(a,b) = . lim Z(p(T, 2mi(xT + %))
=1

mr—oo

Theorem 2.6. Let a, b be coprime natural numbers. If x ¢ Z, then

b—1

s4(a,b) = 2Imligoo Z o(r, 2mi(zT + %))
u=1
= 2B(a,b),

where s4(a,b) stands for Hardy’s sums.

Proof. Substituting y = 4* with u =1, 2,...,b—1 and (a,b) = 1 into (2.2)
with ¢ Z we obtain by Lemma 2.4 _

b—1 b—1

. . au 1 au
2 fim p(r2mi(er + ) = 3 2 (-1
u=1 u=1

By the definition of Hardy sum s4(a,b) in the above, we have the desired
result. O

By using Definition 2.1, we define the sum B(p, a,b) as follows:
Let p be natural number and a, b be integers coprime to p. Let p+a+b be
even. We set

p—1
(2.3) B(p,a,b) = : lim D;(p;a,b) = i {d(p; a,b) +p2(-—l)j+[%l+[%]} .
m7-—-+0Q o1

In the following, we give relations between B(p,a,b), rp(a,b) and three-term
relation for Hardy sums. In what follows, we assume that a, b and p are pairwise
coprime positive integers and a’, b’ and p’ satisfy aa’ = 1 (mod b), by =1 (mod
p) and pp’ =1 (mod a).

Lemma 2.7 ([19]). Let a, b and p be positive integers with a+b+p =0 (mod
2), (a,p) =1 and aa’ =1 (mod p). Further let aa’ =1+ pd, a +6=1 (mod
2), and for 1 < i <p, let j =a'i (mod p). Then

I.
ba i

i+ =+ [’—;fé] +%2) (mod 2).
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Now to define three-term relation for Hardy sums S (ab,, p), we note that a,
b, and b’ are odd and consequently a+b+p = 0 (mod 2). If bb" = 1 + pk, then
k is even and so b +k = 1 (mod 2). Hence by Lemma 3 (for details, see [19],

[24])

p—1 ’ p—1
(2.4) S(ab/,p) — Z(_l)j+l+("‘—2—ll - Z (_1)m+1+[%‘-’-§+[m}f-}‘
=1 m=1

In (8], Berndt and Yeap defined the following sums, which are related to
Dedekind sums: Let h and & be coprime positive integers, and set h + &k = e,
where p and ¢ are positive integers. Define

k—1 . .
(2.5) ru(h, k) = Z cot(%> cot(lgj—).

Note that when p =1, r1(h, k) = 4ks(h, k), which is a Dedekind sum.

Theorem 2.8. Let a, b and p be natural number and a, b be coprime to p.
Under the same conditions of Lemma 2.7, we have

(2.6) B( ab)——i(9+9+p—2)+93( bop)+ 2+ P b, 0)+ Lrp(a, b).
' p”‘lzabab4“‘p44p 4b

If a + b = pc, where p and c are positive integers, then we have
hj
B(p,a,b) = pS ab,p Z cot?( T J

_p (p 1)(p— 2)

= 4S(ab ,p) + D )

where S(ab/, p) is the three-term relation for Hardy sums and rp(a,b) is the
Berndt and Yeap sum.

For a proof of the above theorem we need the following relation:
The mathematical literature contains many evaluations of finite trigonomet-
ric sums of the sort ([8])

E—1
' k—1)(k~2)
2.7 2™y _ (k=1(k~2)
27 Y cot?(%) ;
=1
Now, by (2.5), recall that h + k = pc. Thus by the fact that h and k are

coprime and (2.7}, we get

=1 -1

Thi ) ot (THy S o7
;ot(u (M)_ ;cot(u)
. i (p-DE-2)
= ZCOtZ(%)~—- Ll 3”
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And we see from the equation (2.23) in [8] that have

Z cot( ) cot( mkj )

_kh,u2
s Rt R

Proof of theorem 2.8. By using Theorem 2.2 and (2.3), we have

2.9)
uu+%umm+%mm¢»

1 p_l : av by
B(p,a,b) = 7d(pia,b) + L 3 (-1 I
v=1

Now, the definition of d(p; a, b) in the above yields

152 ma 7rb [e2)4+
Bp.ab) = S oot" L) cot("2) ”Z( s
F=1 PE

where a+b+p is even. Here, we note that a, b, and b are odd and consequently
a+b+p=0(mod2). Ifbd = 1+ pk, then k is even and sob + k=1 (mod
2). Hence by Lemima 2.7, we obtain

naj hj
B(p,a,b) = ~ cot
@ Z:( cot(—>

)+ 25t p).
By substituting (2.8) and (2.9) into the above equation and after some elemen-
tary calculations, we arrive at the result. O

Remark 2.9. In [26] the first author gave behaviors of the Weierstrass p-
function under the modular transformations. By using this relations, he gave
between p-function and Hardy sums. In [2], (3], Bayad studied on the Jacobi
form and Dedekind sums. He gave many applications related to Dedekind sums
and Jacobi form.
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