SC-FDMA 시스템에서의 다이버시티 기술과 채널부호화율의 관계

Relationships between Diversity Techniques and Channel Coding Rates for SC-FDMA Systems

  • 임민중 (동국대학교 정보통신공학과)
  • 발행 : 2009.01.31

초록

OFDMA 및 SC-FDMA 시스템에서, 수신기에서 특별한 시공간 처리를 하지 않으면서 다이버시티를 얻기 위해서, 다수 안테나를 이용하여 시간축의 변화를 일으키거나 주파수 선택적 채널을 만들 수 있다. 분산할당 SC-FDMA 시스템에서 시간 변화를 발생하기 위해 위상 회전 기술을 사용하기 위해서는 낮은 채널부호화율을 적용하는 것이 필요하지만, 시간 변화가 적은 채널을 가정할 때 주파수 선택적 특성을 증가시키기 위하여 순환지연 다이버시티를 적용할 때에는 상대적으로 높은 채널부호화율을 적용하여도 무방하다. 이에 반해서 블록호핑 SC-FDMA 시스템에서는 두 개의 다이버시티 기술이 최적의 채널부호화율 측면에서 큰 차이를 가지지 않는다.

In OFDMA or SC-FDMA systems one can generate time varying channels or frequency selective channels using multiple transmit antennas to achieve diversity without special space-time processing at the receivers. While low channel coding rate needs to be used for distributed-allocation SC-FDMA systems with a phase rolling technique to produce time fluctuation, relatively high channel coding rate can be used when cyclic delay diversity is used to increase frequency selectivity assuming quasi-static channel. On the other hand, for block-hopping SC-FDMA systems there is no significant difference between two diversity techniques in terms of optimal channel coding rates.

키워드

참고문헌

  1. Z. Wang, G. B. Giannakis, 'Wireless Multicarrier Communications,' IEEE Signal Processing Magazine, Vol.17, No.3, pp.29-48, May 2000 https://doi.org/10.1109/79.841722
  2. H. Witschnig, T. Mayer, A. Springer, A. Koppler, 'A Different Look on Cyclic Prefix for SC/FDE,' PIMRC, pp.824-828, September 2002
  3. H. Witschnig, G. Ossberger, A. Springer, A. Koppler, L. Maurer, M. Huemer, R. Weigel, 'The Effect of Blockwise Transmission on Higher-Order Modulation Schemes for SC/FDE,' International Symposium Wireless Personal Multimedia Communications, pp.27-30, October 2002 https://doi.org/10.1109/WPMC.2002.1088394
  4. N.Al-Dhahir, 'Single-Carrier Frequency-Domain Equalization for Space-Time Block-Coded Transmissions over Frequency-Selective Fading Channels,' IEEE Communications Letters, Vol.5, No.7,p p.304-306, July 2001 https://doi.org/10.1109/4234.935750
  5. IEEE Standard 802.16a: Air Interface for Fixed Broadband Wireless Access Systems – Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11GHz, IEEE
  6. D. Falconer, S.L. Ariyavisitakul, A. Benyamin-Seeyar, B. Eidson, 'Frequency Domain Equalization for Single-Carrier Broadband Wireless Systems,' IEEE Communications Magazine, Vol.40, No.4, pp.58-66, April 2002 https://doi.org/10.1109/35.995852
  7. A. Gusmao, R. Dinis, J. Conceicao, N. Esteves, 'Comparisons of Two Modulation Choices for Broadband Wireless Communications,' VTC, pp.1300-1305, May 2000
  8. H. Liu, G. Li, OFDM-Based Broadband Wireless Networks, John Wiley & Sons Inc. 2005
  9. IEEE P802.16e/D12: Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems: Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, October 2005
  10. IEEE802.20: QFDD and QTDD: Proposed Draft Air Interface Specification, Qualcomm, October 2005
  11. 3GPP TR 25.814: Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA, February 2006
  12. R1-050807, ETRI, Pilot Structure for SC-FDMA, London, England, August 2005
  13. R1-050834, LG Electronics, Basic Performance Results for Uplink OFDMA and SC-FDMA, London, England, September 2005
  14. R1-051099, Qualcomm, Considerations on OFDMA and SC-FDMA based Uplink for E-UTRA Evaluation – Link Aspects, SanDiego, CA, October 2005
  15. R1-051421, Nortel, UL Link Level Performance of SC-FDMA and OFDMA with Real Channel Estimation and Virtual MIMO, Seoul, Korea, November 2005
  16. D. Gesbert, M. Shafi, D.S. Shiu, P.J. Smith, A. Naguib, 'From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems,' IEEE Journal on Selected Areas in Communications, Vol.21, No.3, pp.281-302, April2003 https://doi.org/10.1109/JSAC.2003.809458
  17. A. Paularj, R. Nabar, D. Gore, Introduction to Space-Time Wireless Communications, Cambridge University Press, 2003
  18. G. Bauch, J.S. Malik, 'Orthogonal Frequency Division Multiple Access with Cyclic Delay Diversity', Smart Antennas, 2004. ITG Workshop, pp.17-24, March 2004
  19. A. Huebner, F. Schuehlein, M. Bossert, E. Costa, H. Haas, 'A Simple Space-Frequency Coding Scheme with Cyclic Delay Diversity for OFDM,' Personal Mobile Communications Conference, 2003. 5th European, pp.106-110, April 2003
  20. G. Bauch, and J. S. Malik, 'Cyclic delay diversity with bit-interleaved coded modulation in orthogonal frequency division multiple access', IEEE Trans. Wireless Communications, Vol.5, No.8, pp.2092-2100, August 2006 https://doi.org/10.1109/TWC.2006.1687724
  21. S. Haykin, 'Communication Systems,' John Wiley & Sons, 2001
  22. R1-031303, Ericsson, 'System-level evaluation of OFDM - further considerations,' 3GPP RAN WGI #35, Lisbon, Portugal, Novermber 2003
  23. T.M. Cover and J.A. Thomas, Elementary of Information Theory, Wiley, New York, 1991
  24. D.S. Yoo, W.E. Stark, 'Characterization of WSSUS Channels: Normalized Mean Square Covariance and Diversity Combining,' IEEE Trans. on Wireless Communications, Vol.4, No.4 pp.1307-1310, July 2005 https://doi.org/10.1109/TWC.2005.847019
  25. Y.C. Liang, W.S. Len, Y. Zeng, C. Xu, 'Design of Cyclic Delay Diversity for Single Carrier Cyclic Prefix Transmissions with Block-Iterative GDFE Receiver,' IEEE Trans. on Wireless Communications, Vol.7, No.2, pp.677-684, February 2008 https://doi.org/10.1109/TWC.2008.060625