NAF와 타입 II 최적정규기저를 이용한 $GF(2^n)$ 상의 효율적인 지수승 연산

NAP and Optimal Normal Basis of Type II and Efficient Exponentiation in $GF(2^n)$

  • 발행 : 2009.01.31

초록

지수의 signed digit representation을 사용하여 타입 II 최적정규기저에 의해 결정되는 $GF(2^n)$상의 효율적인 지수승 알고리즘을 제안한다. 제안하는 signed digit representation은 $GF(2^n)$에서 non-adjacent form(NAF)를 사용한다. 일반적으로 signed digit representation은 정규기저가 주어진 경우 사용하기 어렵다. 이는 정규 원소의 역원연산이 상당한 지연시간을 갖기 때문이다. 반면에 signed digit representation은 다항식 기저를 이용한 체에 쉽게 적용가능하다. 하지만 본 논문의 결과는 타입 II 최적정규기저(optimal normal basis, ONB), 라는 특별한 정규 기저가 지수의 signed digit representation을 이용한 효율적인 지수승 연산에 이용될 수 있음을 보인다.

We present an efficient exponentiation algorithm for a finite field $GF(2^n)$ determined by an optimal normal basis of type II using signed digit representation of the exponents. Our signed digit representation uses a non-adjacent form (NAF) for $GF(2^n)$. It is generally believed that a signed digit representation is hard to use when a normal basis is given because the inversion of a normal element requires quite a computational delay. However our result shows that a special normal basis, called an optimal normal basis (ONB) of type II, has a nice property which admits an effective exponentiation using signed digit representations of the exponents.

키워드

참고문헌

  1. E.F. Brickel, D.M. Gordon, K.S.McCurley, and D.B. Wilson, 'Fastexponentiation with precomputation,' Eurocrypt 92, Lecture Notes in ComputerScience, Vol.658, pp.200-207, 1992 https://doi.org/10.1007/3-540-47555-9
  2. C.H. Lim and P.J. Lee, "More flexibleexponentiation with precomputation," Crypto 94, Lecture Notes in ComputerScience, Vol.839, pp.95-107, 1994 https://doi.org/10.1007/3-540-48658-5
  3. P. de Rooij, "Efficient exponentiation usingprecomputation and vector addition chains,"Eurocrypt 94, Lecture Notes in ComputerScience, Vol.950, pp.389-399, 1994 https://doi.org/10.1007/BFb0053453
  4. S. Gao, J. von zur Gathen, and D.Panario, "Gauss periods and fastexponentiation in finite fields," Latin 95,Lecture Notes in Computer Science, vol911, pp.311-322, 1995 https://doi.org/10.1007/3-540-59175-3
  5. S. Gao, J. von zur Gathen, and D.Panario, "Orders and cryptographicalapplications," Math. Comp., Vol.67,pp.343-352, 1998 https://doi.org/10.1090/S0025-5718-98-00935-1
  6. S. Gao and S. Vanstone, "On orders ofoptimal normal basis generators,," MathComp., Vol.64, pp.1227-1233, 1995 https://doi.org/10.1090/S0025-5718-1995-1297469-6
  7. A.J. Menezes, I.F. Blake, S. Gao, R.C.Mullin, S.A. Vanstone, and T. Yaghoobian,Applications of Finite Fields, KluwerAcademic Publisher, 1993
  8. S.Feisel, J. von zur Gathen, M.Shokrollahi, "Normal bases via eneralGauss periods," Math. Comp., Vol.68,pp.271-290, 1999 https://doi.org/10.1090/S0025-5718-99-00988-6
  9. J. von zur Gathen and I. Shparlinski,"Orders of Gauss periods in finite fields,"ISAAC 95, Leture Notes in ComputerScience, Vol.1004, pp.208-215, 1995 https://doi.org/10.1007/BFb0015425
  10. H. Wu, "On complexity of polynomialbasis squaring in GF($2^{m}$)," SAC 00,Lecture Notes in Computer Science,Vol.2012, pp.118-129, 2001 https://doi.org/10.1007/3-540-44983-3_9
  11. H. Wu and M.A. Hasan, "Efficientexponentiation of a primitive root inGF($2^{m}$)," IEEE Trans. Computers, Vol.46,pp.162-172, 1997 https://doi.org/10.1109/12.565591
  12. D.M. Gordon, "A survey of fastexponentiation methods," J. Algorithm,Vol.27, pp.129-146, 1998 https://doi.org/10.1006/jagm.1997.0913
  13. S. Arno and F.S. Wheeler, "Signed digitrepresentation of minimal hammingweight," IEEE Trans. Computers, Vol.42,pp.1007-1010, 1993 https://doi.org/10.1109/12.238495
  14. J.H. van Lint, Introduction to CodingTheory, 3rd, Springer-Verlag, 1999
  15. A.J. Menezes, P.C. van Oorschot, and S.A.Vanstone, Handbook of AppliedCryptography, CRC Press, 1996
  16. D.E. Knuth, The Art of ComputerProgramming, 3rd : Seminumericalalgorithms, Vol.II, Addison-Wesley, 2001