DOI QR코드

DOI QR Code

Improved Air Stability of OTFT's with a P3HT/POSS Active Layer

P3HT/POSS 합성 활성층을 이용한 OTFT 소자의 대기안정성 향상

  • 박정환 (매그나칩 PSD사업부 파워솔루션 디비젼) ;
  • 한교용 (영남대학교 전자정보공학부)
  • Published : 2009.02.01

Abstract

In order to improve air stability, we proposed a new active layer of an organic TFT by synthesizing P3HT/POSS conjugated polymer. P3HT/POSS OTFTs with the various P3HT/POSS volume ratios were fabricated and characterized. With the P3HT/POSS volume ratio of 1:1, we achieved the field-effect mobilities of ${\sim}1.19{\times}10^{-3}\;cm^2/v{\cdot}sec$ in the saturation region and the current on/off ratio of ${\sim}2.51{\times}10^2$. The resulting current on-off ratio was much higher than that of the P3HT-based OTFTs and resulted from the dramatic decrease of the off-current. Since the off-current can be reduced by preventing oxygen in atmosphere from doping the P3HT/POSS active layers, this new active layer shows its ability to avoid oxygen doping in atmosphere. Therefore, the improvement of the air stability can be achieved by employing the P3HT/POSS active layers.

Keywords

References

  1. C. K. chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, 'Electrical conductivity in doped polyacetylene', Phys. Rev. Lett., Vol. 39, p. 1098, 1977 https://doi.org/10.1103/PhysRevLett.39.1098
  2. Mohamed S. A. Abdou, X. Lu, Zi W. Xie, F. Orfino, M. Jamal Deen, and S. Holdcroft, 'Nature of impurities in $\pi$-conjugated polymers prepared by ferric chloride and their effect on the electrical properties of metal-insulator-semiconductor structures', Chem. Mater., Vol. 7, p. 631, 1995 https://doi.org/10.1021/cm00052a006
  3. C. P. Jarrett, A. R. Brown, R. H. Friend, M. G. Harrison, D. M. de Leeuw, P. Herwig, and K. M$\ddot{u}$llen, 'Field-effect transistor studies of precursor-pentacene thin films', Synthetic Metals, Vol. 85, Issues 1-3, p. 1403, 1997 https://doi.org/10.1016/S0379-6779(97)80293-7
  4. J. H. Sch$\ddot{o}$n, Ch. Kloc, E. Bucher, and B. Batlogg, 'Single crystalline pentacene solar cells', Synthetic Metals, Vol. 115, Issues 1-3, p. 177, 2000 https://doi.org/10.1016/S0379-6779(00)00330-1
  5. C. W. Tang and S. A. VanSlyke, 'Organic electroluminescent diodes', Appl. Phys. Letts., Vol. 51, Issue 12, p. 913, 1987 https://doi.org/10.1063/1.98799
  6. P. Peumans, V. Bulovi$\acute{c}$, and S. R. Forrest, 'Efficient, high-bandwidth organic multilayer photodetectors', Appl. Phys. Letts., Vol. 76, Issue 26, p. 3855, 2000 https://doi.org/10.1063/1.126800
  7. L. Torsi, A. Dodabalapur, N. Cioffi, L. Sabbatini, and P. G. Zambonin, 'NTCDA organic thin-film-transistor as humidity sensor: weaknesses and strengths', Sensors and Actuators B: Chemical, Vol. 77, Issues 1-2, p. 7, 2001 https://doi.org/10.1016/S0925-4005(01)00664-5
  8. A. Tsumura, H. Koezuka, and T. Ando, 'Macromolecular electronic device: Field-effect transistor with a polythiophene thin film', Appl. Phys. Letts., Vol. 49, Issue 18, p. 1210, 1986 https://doi.org/10.1063/1.97417
  9. N. Tessler, 'Lasers based on semiconducting organic materials', Advanced Materials, Vol. 11, Issue 5, p. 363, 1999 https://doi.org/10.1002/(SICI)1521-4095(199903)11:5<363::AID-ADMA363>3.0.CO;2-Y
  10. R. Schroeder, L. A. Majewski, and M. Grell, 'High-performance organic transistors using solution-processed nanoparticle-filled High-k polymer gate insulators', Advanced Materials, Vol. 17, Issue 12, p. 1535, 2005 https://doi.org/10.1002/adma.200401398
  11. R. J. Willicut and R. L. McCarley, 'Electro- chemically polymerizable self-assembled monolayers', Advanced Materials, Vol. 7, Issue 8, p. 759, 1995 https://doi.org/10.1002/adma.19950070819
  12. 박경동, 남동현, 박정환, 한교용, '포토리소그래피를 이용한 P3HT 활성층의 패터닝에 대한 연구', 전기전자재료학회논문지, 20권, 4호, p. 294, 2007 https://doi.org/10.4313/JKEM.2007.20.4.294
  13. S. Y. Kim, J. M. Baik, H. K. Yu, and J.-L. Lee, 'Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides', J. Appl. Phys., Vol. 98, p. 093707, 2005 https://doi.org/10.1063/1.2123375
  14. M. J. Joung, C. A. Kim, S. Y. Kang, K.-H. Baek, G. H. Kim, S. D. Ahn, I. K. You, J. H. Ahn, and K. S. Suh, 'The application of soluble and regoiregular poly(3-hexylthiphene) for organic thin-film transistors', Synthetic Metals, Vol. 149, p. 73, 2005 https://doi.org/10.1016/j.synthmet.2004.11.003
  15. S. Scheinert and G. Paasch, 'Fabrication and analysis of polymer field-effect transistors', Phys. Stat. Sol. (a), Vol. 201, Issue. 6, p. 1263, 2004 https://doi.org/10.1002/pssa.200404335
  16. C. R. Kagan and P. Andry, 'Thin-Film Transistors', Marcel Dekker Inc., Chapter 6, 2003
  17. Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, '$H_2O$ effect on the stability of organic thin-film field-effect transistors', Appl. Phys. Lett., Vol. 83, Issue. 8, p. 1644, 2003 https://doi.org/10.1063/1.1604193
  18. S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, and K. Yase, 'Influence of moisture on device characteristics of polythiophene-based field- effect transistors', J. Appl. Phys., Vol. 95, p. 5088, 2004 https://doi.org/10.1063/1.1691190
  19. M. S. A. Abdou, F. P. Orfino, Y. Son, and S. Holdcroft, 'Interaction of oxygen with conjugated polymers: Charge transfer complex formation with poly(3-alkylthiophenes)', J. Am. Chem. Soc. Vol. 119, Issue 19, p. 4518, 1997 https://doi.org/10.1021/ja964229j
  20. L. A. Majewski, J. W. Kingsley, C. Balocco, and A. M. Song, 'Influence of processing conditions on the stability of poly(3- hexylthiophene)-based field-effect transistors', Appl. Phys. Lett., Vol. 88, p. 222108, 2006 https://doi.org/10.1063/1.2208938

Cited by

  1. Characteristics of Organic Thin Film Transistors with Organic and Organic-inorganic Hybrid Polymer Gate Dielectric vol.22, pp.12, 2009, https://doi.org/10.4313/JKEM.2009.22.12.1009