참고문헌
- Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression, Annals of Statistics, 32, 407-499 https://doi.org/10.1214/009053604000000067
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle prop-erties, Journal of the American Statistical Association, 96, 1348-1360 https://doi.org/10.1198/016214501753382273
- Kim, Y., Choi, H. and Oh, H. (2008). Smoothly clipped absolute deviation on high-dimensions, Journal of the American Statistical Association, To appear https://doi.org/10.1198/016214508000001066
- Konecker, R. and Bassett, G. (1978). Regression quantiles, Econometrica, 46, 33-50 https://doi.org/10.2307/1913643
- Konecker, R. and Portnoy, S. (1994). Quantile smoothing splines, Biometrika, 81, 673-680 https://doi.org/10.1093/biomet/81.4.673
-
Li, Y. and Zhu, J. (2008).
$L_{1}$ -norm quantile regression, Journal of Computational and Graphical Statistics, 17, 163-185 https://doi.org/10.1198/106186008X289155 - Scheetz, T. E., Kim, K. Y., Swiderski, R. E., Philp, A. R., Braun, T. A., Knudtson, K. L., Dorrance, A. M., DiBona, G. F., Huang, J., Casavant, T. L., Sheffield, V. C. and Stone, E. M. (2006). Reg-ulation of gene expression in the Mammalian eye and its relevance to eye disease, Proceedings of the National Academy of Sciences, 103, 14429-14434 https://doi.org/10.1073/pnas.0602562103
- Schwarz, G. (1978). Estimating the dimension of a model, The Annals of Statistics, 6, 461-464 https://doi.org/10.1214/aos/1176344136
- Yuan, M. (2006). GACV for quantile smoothing splines, Computational Statistics and Data Analysis, 50, 813-829 https://doi.org/10.1016/j.csda.2004.10.008
- Yuille, A. and Rangarajan, A. (2003). The concave-convex procedure, Neural Computation, 15, 915-936 https://doi.org/10.1162/08997660360581958