DOI QR코드

DOI QR Code

Quantile Regression with Non-Convex Penalty on High-Dimensions

  • Choi, Ho-Sik (Dept. of Informational Statistics and Institute of Basic Science, Hoseo Univ.) ;
  • Kim, Yong-Dai (Dept. of Statistics, Seoul National Univ.) ;
  • Han, Sang-Tae (Dept. of Informational Statistics, Hoseo Univ.) ;
  • Kang, Hyun-Cheol (Dept. of Informational Statistics, Hoseo Univ.)
  • 발행 : 2009.01.31

초록

In regression problem, the SCAD estimator proposed by Fan and Li (2001), has many desirable property such as continuity, sparsity and unbiasedness. In this paper, we extend SCAD penalized regression framework to quantile regression and hence, we propose new SCAD penalized quantile estimator on high-dimensions and also present an efficient algorithm. From the simulation and real data set, the proposed estimator performs better than quantile regression estimator with $L_1$ norm.

키워드

참고문헌

  1. Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression, Annals of Statistics, 32, 407-499 https://doi.org/10.1214/009053604000000067
  2. Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle prop-erties, Journal of the American Statistical Association, 96, 1348-1360 https://doi.org/10.1198/016214501753382273
  3. Kim, Y., Choi, H. and Oh, H. (2008). Smoothly clipped absolute deviation on high-dimensions, Journal of the American Statistical Association, To appear https://doi.org/10.1198/016214508000001066
  4. Konecker, R. and Bassett, G. (1978). Regression quantiles, Econometrica, 46, 33-50 https://doi.org/10.2307/1913643
  5. Konecker, R. and Portnoy, S. (1994). Quantile smoothing splines, Biometrika, 81, 673-680 https://doi.org/10.1093/biomet/81.4.673
  6. Li, Y. and Zhu, J. (2008). $L_{1}$-norm quantile regression, Journal of Computational and Graphical Statistics, 17, 163-185 https://doi.org/10.1198/106186008X289155
  7. Scheetz, T. E., Kim, K. Y., Swiderski, R. E., Philp, A. R., Braun, T. A., Knudtson, K. L., Dorrance, A. M., DiBona, G. F., Huang, J., Casavant, T. L., Sheffield, V. C. and Stone, E. M. (2006). Reg-ulation of gene expression in the Mammalian eye and its relevance to eye disease, Proceedings of the National Academy of Sciences, 103, 14429-14434 https://doi.org/10.1073/pnas.0602562103
  8. Schwarz, G. (1978). Estimating the dimension of a model, The Annals of Statistics, 6, 461-464 https://doi.org/10.1214/aos/1176344136
  9. Yuan, M. (2006). GACV for quantile smoothing splines, Computational Statistics and Data Analysis, 50, 813-829 https://doi.org/10.1016/j.csda.2004.10.008
  10. Yuille, A. and Rangarajan, A. (2003). The concave-convex procedure, Neural Computation, 15, 915-936 https://doi.org/10.1162/08997660360581958