SPECTRUMS OF WEIGHTED LEFT REGULAR ISOMETRIES OF A STRONGLY PERFORATED SEMIGROUP

  • 투고 : 2008.12.31
  • 발행 : 2009.03.30

초록

We compute spectrums of left regular isometries and weighted left regular isometries of a strongly perforated semigroup $P=\{0,2,3,4,{\cdots}\}$.

키워드

참고문헌

  1. L. A. Coburn, The $C^{\ast}$-algebra generated by an isometry, II, Trans. Amer. Math. Soc. 137 (1969), 211-217.
  2. J. Cuntz, Simple $C^{\ast}$-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173-185. https://doi.org/10.1007/BF01625776
  3. K. R. Davidson, Elias Katsoulis and David R. Pitts, The structure of free semi-group algebras J. Reine Angew. Math. 533(2001), 99-125.
  4. Jacques Diximier, Les $C^{\ast}$-algebres et Leurs Representations, Gauthier-Villars, Paris, 1964.
  5. R. G. Douglas, On the $C^{\ast}$-algebra of a one-parameter semigroup of isometries, Acta Math. 128(1972), 143-152. https://doi.org/10.1007/BF02392163
  6. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
  7. S. Y. Jang, Reduced crossed products by semigroups of automorphisms J. Korean Math. 36 (1999), 97-107.
  8. S. Y, Jang, Generalized Toeplitz algebras of a certain non-amenable semigroup Bull. Korean Math. Soc. 43(2006),333-341. https://doi.org/10.4134/BKMS.2006.43.2.333
  9. J. M. Fell, Weak containment and induced representations of groups, Can. J. Math. 14(1962), 237-268. https://doi.org/10.4153/CJM-1962-016-6
  10. M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139(1996), 415-446. https://doi.org/10.1006/jfan.1996.0091
  11. P. Muhly and J. Renault, $C^{\ast}$-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274(1982), 1-44.
  12. G. J. Murphy,Crossed products of $C^{\ast}$-algebras by semigroups of automorphisms, Proc. London Math. Soc. (3) 68(1994), 423-448. https://doi.org/10.1112/plms/s3-68.2.423
  13. A. Nica, $C^{\ast}$-algebras generated by isometries and Wiener-Hoff operators, J. Operator Theory 27(1992), 17-52.
  14. C. Pearcy, A complete set of unitary invariants for operators generating finite $W^{\ast}$-algebras of type I, Pacific J. Math. 12 (1962), 1405-1416. https://doi.org/10.2140/pjm.1962.12.1405
  15. G. K. Pedersen, $C^{\ast}$-algebras and their automorphism groups, Academic Press, New York, 1979.
  16. S. Saksi, On a characterization of type I $C^{\ast}$-algebras, Bull. Amer. Math. Soc. 72 (1966), 508-512. https://doi.org/10.1090/S0002-9904-1966-11520-3
  17. Mikael Rordam, Structure and classification of $C^{\ast}$-algebras , Proceedings of the ICM, Madrid, Spain, European Mathematical Society, 2006.