NONBINARY INCIDENCE CODES OF (n, n − 1, j)-POSET

  • Yan, Longhe (Department of Mathematics, Inha University)
  • 투고 : 2009.03.17
  • 발행 : 20090600

초록

Let P be a (n, n − 1, j)-poset, which is a partially ordered set of cardinality n with n − 1 maximal elements and $j(1{\leq}j{\leq}n-1)$ minimal elements, and $P^*$ the dual poset of P. In this paper, we obtain two types of incidence codes of nonempty proper subset S of P and $P^*$, respectively, by using Bogart's method [1] (see Theorem 3.3).

키워드

참고문헌

  1. K. P. Bogart, Incidence codes of posets: Eulerian posets and Reed-Muller codes, Discrete Math., 31 (1980), 1-7. https://doi.org/10.1016/0012-365X(80)90167-3
  2. R. A. Brualdi, J. S. Graves and K. M. Lawrence, Codes with a poset metric, Discrete Math., 147 (1995), 57-72. https://doi.org/10.1016/0012-365X(94)00228-B
  3. Y. Jang and J. Park, On a MacWilliams type identity and a perfectness for a binary linear (n, n - 1, j)-poset code, Discrete Math., 265 (2003), 85-104. https://doi.org/10.1016/S0012-365X(02)00624-6