DOI QR코드

DOI QR Code

Effects of Supplementation of Synbiotic Co-cultures Manufactured with Anaerobic Microbes on In Vitro Fermentation Characteristics and In Situ Degradability of Fermented TMR

혐기성 미생물로 제조한 synbiotics 혼합배양물의 첨가가 발효 TMR의 발효특성과 소실률에 미치는 영향

  • Lee, Shin-Ja (Division of Applied Life Science(BK 21 Program), Graduate School Gyeongsang National University) ;
  • Shin, Nyeon-Hak (Division of Applied Life Science(BK 21 Program), Graduate School Gyeongsang National University) ;
  • Hyun, Jong-Hwan (Division of Applied Life Science(BK 21 Program), Graduate School Gyeongsang National University) ;
  • Kang, Tae-Won (Division of Applied Life Science(BK 21 Program), Graduate School Gyeongsang National University) ;
  • An, Jung-Jun (Division of Applied Life Science(BK 21 Program), Graduate School Gyeongsang National University) ;
  • Jung, Ho-Sik (Hanyang Feed Industrial Company limited) ;
  • Moon, Yea-Hwang (Department Animal Science & Biotechnology, Jinju National University) ;
  • Lee, Sung-Sill (Division of Applied Life Science(BK 21 Program), Graduate School Gyeongsang National University)
  • 이신자 (경상대학교 응용생명과학부(BK 21)) ;
  • 신년학 (경상대학교 응용생명과학부(BK 21)) ;
  • 현종환 (경상대학교 응용생명과학부(BK 21)) ;
  • 강태원 (경상대학교 응용생명과학부(BK 21)) ;
  • 안정준 (경상대학교 응용생명과학부(BK 21)) ;
  • 정호식 (한양사료공업주식회사) ;
  • 문여황 (진주산업대학교 동물생명과학과) ;
  • 이성실 (경상대학교 응용생명과학부(BK 21))
  • Published : 2009.11.30

Abstract

This study was conducted to estimate the in vitro fermentation characteristics and in situ degradabilities of total mixed rations fermented by the synbiotic co-cultures composed of various anaerobic microorganisms in the rumen of cow. Seventy two TMR bags (4 treatments $\times$ 6 fermentation days $\times$ 3 replications) were manufactured for in vitro and in situ experiments. The experiment was composed of four treatments including the control, the mould and bacteria synbiotics (T1), the mould and yeast synbiotics (T2) and the bacteria and yeast synbiotics (T3). Each treatment had six fermentation days (1, 3, 5, 7, 14, 21 day) with three replications. Two rumen cannulated Holstein cows (550 ㎏ of mean body wt) were used for in situ trial, and a total of 96 nylon bags were retrieved from the rumen according to eight fermentation times (1, 3, 6, 9, 18, 24, 48 and 72 hr). The mean fermentation temperatures of TMRs by supplementation of anaerobic micoorganism co-cultures ranged from $22.97^{\circ}C$ to $26.07^{\circ}C$, and tended to increase steadily during the entire period. pH values of the F-TMRs ranged from 4.39 to 4.98 and tended to decrease with the extension of the fermentation period, and decreased by supplementation of synbiotics (p<0.05). The ammonia concentrations of F-TMRs were not affected by addition of synbiotic co-cultures during the early fermentation period (within 7 days), but was lowest (p<0.05) in T3 during the late fermentation periods (after 14 days). Lactic acid concentration of F-TMR was lowest in T3 at 1 day of fermentation, but was not different from treatments in the other fermentation days. Microbial growth rates of F-TMR reached a peak at 7 days of fermentation, and afterward tended to decrease. In in situ experiment, the DM disappearance rates were higher in T1 than the control during early fermentation times (within 3 hours), but was vice versa at 48 hours of fermentation (p<0.05). There was no significant difference in effective DM degradability among treatments. NDF and ADF disappearance rates in situ were similar to those of DM. From the above results, the supplementation of synbiotics, particularly the mould and bacteria synbiotics, resulted in improving the pH and concentration of lactic acid of F-TMR as parameters of fermentation compare to the control, and also had higher in situ disappearance rates of DM, NDF and ADF than the control at early fermentation time. However, effective DM degradability was not affected by supplementation of synbiotics.

본 연구는 혐기성 박테리아, 곰팡이 및 효모로 제조한 synbiotics 혼합 배양물을 TMR 제조 시에 접종하여 발효기간에 따른 반추위 in vitro 발효특성과 in situ 분해율에 미치는 영향을 조사하고자 수행되었다. 처리구는 무처리구(Control), 곰팡이와 박테리아로 제조한 synbiotic 첨가구(T1), 곰팡이와 효모로 제조한 synbiotic첨가구(T2), 그리고 박테리아와 효모로 제조한 synbiotic 첨가구(T3)로 나누어, 6회의 발효기간(1, 3, 5, 7, 14 및 21일)에 따라 처리당 3반복으로 총 72개의 F-TMR (4처리 $\times$ 6회 $\times$ 3반복)을 제조하였다. In situ시험은 반추위 누관이 장착된 Holstein (평균체중 550 kg) 젖소 2두를 사용하여 4처리의 F-TMR을 반추위내에서 현수시간별(1, 3, 6, 9, 18, 24, 48 및 72 시간)로 각각 3반복하여 두당 96개의 nylon bag (4 처리 $\times$ 8 발효시간 $\times$ 3반복)을 제조하였다. 발효기간에 따른 TMR의 온도변화는 발효기간이 진행됨에 따라 높아지는 경향 이었으며, pH는 4.39~4.98범위로서 발효기간이 진행됨에 따라 감소되는 경향이었으며, 각 발효시간대별로는 대조구에서 높았고, synbiotics 처리구에서 낮게 나타났다(p<0.05). F-TMR의 암모니아 농도는 발효 7일째까지는 처리간 차이가 없었으나 14일째 이후에는 대조구에 비해 박테리아와 효모를 첨가한 synbiotics인 T3구에서 가장 낮았다(p<0.05). Lactic acid 함량은 발효 1일째에 T3구에서 가장 낮았으나 다른 발효시간대에서는 처리간 차이가 없었다. 발효기간별 F-TMR의 미생물 성장률(OD값)은 각 발효시간대별로 처리간에 차이가 없었으며, 발효기간 7일째에 정점을 나타낸 이후로 점차 감소하는 경향이었다. In situ 건물 소실률은 발효초기인 1~3시간대에 곰팡이와 박테리아 synbiotics 첨가구인 T1구가 대조구에 비해 건물소실율이 높았으나, 발효 48시간대에는 오히려 대조구에서 건물소실율이 가장 높았다(p<0.05). 다른 발효시간대의 건물 소실율과 유효분해도는 처리간 차이가 없었으며, NDF와 ADF소실율은 건물 소실율의 결과와 비슷하였다. 결론적으로 발효의 척도가 되는 pH와 lactic acid 함량은 synbiotics 첨가구가 대조구에 비해 좋은 결과를 나타내었으며, in situ 시험에서 발효초기에 건물과 섬유소 소실율이 곰팡이와 박테리아를 조합한 synbiotics구에서 높게 나타났으나 유효 분해도에서는 차이가 거의 나타나지 않아 처리효과가 미흡한 것으로 조사되었다.

Keywords

References

  1. A.O.A.C. 1995. Offical methods of analysis 16th edition. Association of official analytical chemists, Washington, D.C.
  2. Beharka, A. A. and T. G. Nagaraja. 1993. Effects of Aspergillus oryzae extract on in vitro fiber digestion. J. Dairy Sci. 78, 573-581 https://doi.org/10.3168/jds.S0022-0302(95)76668-1
  3. Chaney, A. L. and E. P. Marbacch. 1962. Modification reagents for determination of urea and ammonia. Clin. Chem. 8, 130-132
  4. Dawson, K. A., K. E. Neyman, and J. A. Boling. 1990. Effects of microbial supplements containing yeast and lactobacilli on rouhgage-fed ruminal microbial activities. J. Anim. Sci. 68, 3392-3398
  5. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11, 1-42 https://doi.org/10.2307/3001478
  6. Ehle, F. R. 1984. Influence of particle size on determination of fibrous feed components. J. Dairy Sci. 67, 1482-1488 https://doi.org/10.3168/jds.S0022-0302(84)81465-4
  7. Ehle, F. R., M. R. Murphy, and J. H. Clark. 1982. In situ Particle size reduction and the effect of particle size on degradation of crude protein and dry matter in the rumen of dairy steers. J. Dairy Sci. 65, 963-971 https://doi.org/10.3168/jds.S0022-0302(82)82297-2
  8. Ely, L. O., E. M. Sudweeks, and N. J. Moon. 1981. Inoculation with Lactobacillus plantarum of alfalfa, corn, sorghum, and wheat silages. J. Dairy Sci. 64, 2378-2387 https://doi.org/10.3168/jds.S0022-0302(81)82860-3
  9. Erasmus, L. J., P. M. Botha, and A. Kistner. 1992. Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J. Dairy Sci. 75, 3056-3065 https://doi.org/10.3168/jds.S0022-0302(92)78069-2
  10. Filya, I. 2003. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability, and ruminal degradability of wheat, sorghum, and maize silages. J. Appl. Microbiol. 95, 1080-1086 https://doi.org/10.1046/j.1365-2672.2003.02081.x
  11. Filya, I., A. Karabulut, and E. Sucu. 2002. The effect of Lactobacillus plantarum and Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of maize silage in warm climate. Pages 192-193 in Proc. XIII IntI. Silage Conf. Auchincruive, Ayr, Scotland
  12. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bact. 66, 365-378 https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  13. Gibson, G. R. and B. M. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401-1412
  14. Gomez-Alarcon, R. A., D. Dudas, and J. T. Huber. 1990. Influence of Aspergillus oryzae on rumen and total tract digestion of dietary components. J. Dairy Sci. 73, 703-710 https://doi.org/10.3168/jds.S0022-0302(90)78723-1
  15. Graham, H., W. Lowgren, D. Pettersson, and P. Aman. 1988. Effect of enzyme supplementation on digestion of a barley/pollards-based pig diet. Nutr. Rep. Inter. 38, 1073-1079
  16. Ha, J. K., S. S. Lee, Y. S. Moon, and C. Y. Kim. 2005. Ruminant Nutrition and Physiology
  17. Harrison, G. A., R. W. Hemken, K. A. Dawson, R. J. Harmon, and K. B. Barker. 1988. Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial populations. J. Dairy. Sci. 71, 2967-2975 https://doi.org/10.3168/jds.S0022-0302(88)79894-X
  18. Holdman, L. V., E. P. Coto, and W. E. C. Moore. 1977. Anaerobic laboratory manual(4th ed), Virginia Poly tech. Inct. and State Univ. Blackburg, Virginia, USA
  19. Jasaitis, D. K., J. E. Wohlt, and J. L. Evans. 1987. Influence of fed ion content on buffering capacity of ruminant feedstuffs in vitro. J. Dairy Sci. 70, 1391-1403 https://doi.org/10.3168/jds.S0022-0302(87)80161-3
  20. Kelly, D. 1998. Probiotics in young and newborn animals. J. Anim. Feed Sci. 7, 15-23
  21. Kung, L., M. R. Stokes, and C. J. Lin. 2003. Silage additives. pp. 305-360, Silage Science and Technology In Buxton, D. R., R. E. Muck, and J. H. Harrison (eds.), Am. Soc. Agron., Crop Sci. Soc. Am., Soil Sci. Soc. Am., Madison, WI
  22. Martin, S. A. and D. J. Nisbet. 1990. Effects of Aspergillus oryzae fermentation extract on fermentation of amino acids, bermudagrass and starch by mixed ruminal microorganisms in vitro. J. Anim. Sci. 68, 2142-2149
  23. Martinsson, K. 1991. A comparison between formic acid and an inoculant for the preservation of grass silage for dairy cows. Swedish J. Agric. Res. 21, 121-130
  24. McDonald, P. 1981. Clostridia. pp. 62-76. The biochemistry of silage. John Wiley and Sons. Ltd. Pitman Press, Bath, England
  25. Michalet-Doreau, B. and J. P. Jouany. 1998. Effect of a Saccharomyces cerevisiae culture on nutrient digestion in lactating dairy cows. J. Dairy Sci. 81, 3214-3221 https://doi.org/10.3168/jds.S0022-0302(98)75885-0
  26. Mitsuoka, T. 1980. Zonaisaikinno Sekai. Sobunsha. 21, 1-34
  27. Nisbet, D. J., Corrier, D. E., Scanlan, C. M., Hollister, A. G., Beier, R. C. and Deloach, J. R. 1993. Effect of defined continuous-flow derived bacterial culture and dietary lactose on Salmonella colonization in broiler chicks. Avian Disease. 37, 1017-1025 https://doi.org/10.2307/1591908
  28. Ogimoto, K. and S. Imai. 1981. Atlas of Rumen Microbiology. Japan. Scientific Societies Press. Tokyo, Japan
  29. Park, H. S., Yoo, Y. H., Jeon, B. S. and Cha, J. O. 1996. Effect of feeding viable yeast and lactobacillus on milk yield and milk fat content. Korean J. Anim Sci. 38, 77
  30. Pettersson, D., H. Graham and P. Amen. 1989. Enzyme supplementation of broiler chickens. Ani. Prod. 51, 399-404
  31. Plata, P. F., M. G. D. Mendoza, J. R. Ba'rcena-Gama, and M. S. Gonza' lez. 1994. Effect of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiber digestion in steers fed oat straw based diets. Anim. Feed Sci. Technol. 49, 203-210 https://doi.org/10.1016/0377-8401(94)90046-9
  32. Poppi, D. P., B. W. Norton, D. J. Minson, and R. E. Hendrichson. 1980. The validity of the critical size theory for particles leaving the rumen. J. Agric. Sci.(Camb) 94, 275-280 https://doi.org/10.1017/S0021859600028859
  33. Ranjit, N. K., C. C. Taylor, and L. Kung. 2002. Effect of Lactobacillus buchneri 40799 on the fermentation, aerobic stability and nutritive value of maize silage. Grass Forage Sci. 57, 73-81 https://doi.org/10.1046/j.1365-2494.2002.00304.x
  34. SAS. 1999. SAS/STAT software for PC. Release 8.01. SAS institute Inc., Cary, N. C., U.S.A
  35. Stokes, M. R. 1992. Effects of an enzyme mixture, an inoculant, and their interaction on silage fermentation and dairy production. J. Dairy Sci. 75, 764-773 https://doi.org/10.3168/jds.S0022-0302(92)77814-X
  36. Van Keuren, R. W. and Heineman, W. W. 1962. Study of a nylon bag technique for in vivo estimation of froage disappearance rate. J. Anim. Sci. 21, 340-345
  37. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  38. Ward, R. T. 2000. Fermentation Analysis: Use and Interpretation. Pages 117-136 in Proc. Tri-State Dairy Nutr. Cone Ft. Wayne, IN
  39. Whiter, A. G. and L. Kung. 2001. The effect of a dry or liquid application of Lactobacillus plantarum MTDI on the fermentation of alfalfa silage. J. Dairy Sci. 84, 2195-2202 https://doi.org/10.3168/jds.S0022-0302(01)74666-8
  40. Wiedmeier, R. D., M. J. Arambel, and J. L. Walters. 1987. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. J. Dairy Sci. 70, 2063-2068 https://doi.org/10.3168/jds.S0022-0302(87)80254-0
  41. Williams, P. E. V. and C. J. Newbold. 1990. Rumen probiosis: The effects of novel microorganisms on rumen fermentation and ruminant productivity. In 'Recent Advances in Animal Nutrition' Eds by W. Haresign and D. J A. Cole. p.211. Butterworths, London
  42. Williams, P. E. V., C. A. G. Tait, G. M. Innes, and C. J. Newbold. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim. Sci. 69, 3016-3026
  43. Orskov, E. R. and I. Mcdonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499-503 https://doi.org/10.1017/S0021859600063048