DOI QR코드

DOI QR Code

Heat Shock Induces Necrosis in Cisplatin-resistant Gastric Cancer Cells through Suppressing JNK1/2 Activation and HSP27 Induction

시스플라틴 내성세포주에서 열충격에 의한 세포사멸에 관한 연구

  • Lim, Sung-Chul (Research Center for Resistant Cells, Chosun University) ;
  • Choi, Cheol-Hee (Research Center for Resistant Cells, Chosun University) ;
  • Han, Song-Iy (Research Center for Resistant Cells, Chosun University)
  • 임성철 (조선대학교 내성세포센터) ;
  • 최철희 (조선대학교 내성세포센터) ;
  • 한송이 (조선대학교 내성세포센터)
  • Published : 2009.12.30

Abstract

Carcinoma cells that had acquired resistance to a chemotherapeutic drug often show cross-resistance to various other cytotoxic drugs. In the present study, we explored the effect of heat shock in cisplatin-resistant gastric cancer cells SNU601/Cis2 to figure out the efficacy of hyperthermia in drug-resistant carcinoma. While SNU601/WT cells showed a high-sensitivity response to heat shock by dying through apoptosis, SNU601/Cis2 cells were considerably resistant to mild heat shock, but died by necrosis upon treatment with harsh heat shock. The occurrence of necrosis in SNU601/Cis2 cells was linked to the suppression of both JNK1/2 activation and HSP27 induction in response to heat shock. Since necrosis is closely associated with tumor malignancy and poor prognosis through inflammatory responses, our result suggests that hyperthermic treatment should be carefully applied when it is combined with chemotherapy.

항암제 내성을 획득한 암세포는 많은 경우 다양한 세포 독성 물질에 대해 교차 내성을 나타낸다. 그러나 온열 치료가 내성 획득 종양에 적용 될 때의 종양 세포의 사멸 효과는 알려져 있지 않다. 본 연구는 시스플라틴에 내성을 갖는 위암 세포 주, SNU601/Cis2이 열충격에 반응하는 민감도와 세포 사멸 방식을 조사함으로써 약물 내성 종양의 온열 치료 효과를 예측하고자 하였다. 정상 위암 세포 주 SNU601/WT은 열충격에 매우 민감하게 반응하며 apoptosis로 사멸하지만, 내성 위암 세포 주 SNU601/Cis2는 미열충격에 내성을 나타내었으며 고열충격에 노출되자 necrosis로 사멸하였다. 또한 SNU601/Cis2에서 necrosis의 발생은 열충격에 의한 JNK1/2의 활성화와 HSP27의 발현저하 현상과 관련되어 있었다. Necrosis의 유도는 세포막 파괴에 의해 세포 내부 물질의 방출로 인한 주변 조직의 염증반응을 수반하는데, 이러한 염증 반응은 암의 성장을 촉진하고 암의 성상을 심화시키는 것으로 보고되고 있다. 이러한 관점에서, 온열 치료가 약물 치료와 병행 될 경우에는 교차 내성과 necrosis로 인한 역효과를 방지하기 위하여, 그 적용이 주의 깊게 이루어져야 할 것으로 판단된다.

Keywords

References

  1. Blagosklonny, M. V. 2002. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16, 455-462 https://doi.org/10.1038/sj.leu.2402415
  2. Brozovic, A, G Fritz, M. Christmann, J. Zisowsky, U. Jaehde, M. Osmak and B. Kaina. 2004. Long-term activation of SAPK/JNK p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int. J. Cancer 112, 974-985 https://doi.org/10.1002/ijc.20522
  3. Choi, C. H, H. S. Kim, O. S. Kweon, T. B. Lee, H J. You, H S. Rha, J. H Jeong, D. Y. Lim, Y. D. Min, M. S. Kim, and M. H Chung. 2000. Reactive oxygen species-specific mechanisms of drug resistance in paraquat-resistant acute myelogenous leukemia sublines. Mol. Cells 10, 38-46 https://doi.org/10.1007/s10059-000-0038-0
  4. Corry, P. M. and E. P. Armour. 2005. The heat shock response: role in radiation biology and cancer therapy. Int. J. Hyperthermia 21, 769-778 https://doi.org/10.1080/02656730500394197
  5. Demirag, F., E. Unsat A Yilmaz, and A Caglar. 2005. Prognostic significance of vascular endothelial growth factor, tumor necrosis, and mitotic activity index in malignant pleural mesothelioma. Chest 128, 3382-3387 https://doi.org/10.1378/chest.128.5.3382
  6. Edwards, J. G, D. E. Swinson, J. 1. Jones, S. Muller, D. A Waller, and K. J. O'Byrne. 2003. Tumor necrosis correlates with angiogenesis and is a predictor of poor prognosis in malignant mesothelioma. Chest 124, 1916-1923 https://doi.org/10.1378/chest.124.5.1916
  7. Gibbons, N. B., R. W. Watson, R. N. Coffey, H. P. Brady, and J. M. Fitzpatrick. 2000. Heat-shock proteins inhibit induction of prostate cancer cell apoptosis. Prostate 45, 58-65 https://doi.org/10.1002/1097-0045(20000915)45:1<58::AID-PROS7>3.0.CO;2-#
  8. Han, S. I., H. Q. Duong, J. E. Choi, T. B. Lee, C. H Kim, S. Y. Lee, H M. Jeon, S. H Shin, S. C. Lim, and H S. Kang. 2008. Hyperthermia switches glucose depletion-induced necrosis to apoptosis in A549 lung adenocarcinoma cells. Int. J. Oncol. 32, 851-860
  9. Han, S. I., S. Y. Oh, S. H Woo, K. H Kim, J. H Kim, H D. Kim, and H S. Kang. 2001. Implication of a small GTPase Rac1 in the activation of c-Jun N-terminal kinase and heat shock factor in response to heat shock. J. BioI. Chem. 276, 1889-1895 https://doi.org/10.1074/jbc.M006042200
  10. Iwasaki, I., H Sugiyama, S. Kanazawa, and H Hemmi. 2002. Establishment of cisplatin-resistant variants of human neuroblastoma cell lines, TGW and GOTO, and their drug cross-resistance profiles. Cancer Chemother. Pharmacol. 49, 438-444 https://doi.org/10.1007/s00280-002-0452-4
  11. Jolly, C. and R. I. Morimoto. 2000. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92, 1564-1572 https://doi.org/10.1093/jnci/92.19.1564
  12. Kang, C. D., B. K. Ahn, C. S. Jeong, K. W. Kim, H. J. Lee, S. D. Yoo, B. S. Chung, and S. H Kim. 2000. Downregulation of JNK/SAPK activity is associated with the cross-resistance to P-glycoprotein-unrelated drugs in multidrug-resistant FM3A/M cells overexpressing P-glycoprotein. Exp. Cell Res. 256, 300-307 https://doi.org/10.1006/excr.2000.4807
  13. Kim, J. H., T. H Kim, H. S. Kang, J. Ro, H. S. Kim, and S. Yoon. 2009. SP600125, an inhibitor of Jnk pathway, reduces viability of relatively resistant cancer cells to doxorubicin. Biochem. Biophys. Res. Commun. 387, 450-455 https://doi.org/10.1016/j.bbrc.2009.07.036
  14. Komatsu, M., T. Sumizawa, M. Mutoh, Z. S. Chen, K. Terada, T. Furukawa, X. 1. Yang, H Gao, N. Miura, T. Sugiyama, and S. Akiyama. 2000. Copper- transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res. 60, 1312-1316
  15. McCubrey, J. A, 1. S. Steelman, S. 1. Abrams, J. T. Lee, F. Chang, F. E. Bertrand, P. M. Navolanic, D. M. Terrian, R A Franklin, A B. D' Assoro, J. 1. Salisbury, M. C. Mazzarino, F. Stivala, and M. Libra. 2006. Roles of the RAF/MEK/ERK and PI3K/PTEN/ AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul. 46, 249-279 https://doi.org/10.1016/j.advenzreg.2006.01.004
  16. Minardi, D., G. Lucarini, A Filosa, G. Milanese, A Zizzi, R Di Primio, R Montironi, and G. Muzzonigro. 2008. Prognostic role of tumor necrosis, microvessel density, vascular endothelial growth factor and hypoxia inducible factor-1 alpha in patients with clear cell renal carcinoma after radical nephrectomy in a long term follow-up. Int. J. Immunopathol Pharmacol 21, 447-455
  17. Nakamura, K, K Rokutan, N. Marui, A Aoike, and K Kawai. 1991. Induction of heat shock proteins and their implication in protection against ethanol-induced damage in cultured guinea pig gastric mucosal cells. Gastroenterology 101, 161-166
  18. Park, C. H, M. J. Lee, J. Ahn, S. Kim, H H Kim, K H. Kim, H C. Eun, and J. H Chung. 2004. Heat shock-induced matrix metalloproteinase (MMP)-l and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop. J. Invest. Dermatol. 123, 1012-1019 https://doi.org/10.1111/j.0022-202X.2004.23487.x
  19. Pisani, P., D. M. Parkin, F. Bray, and J. Ferlay. 1999. Erratum: Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer 83, 870-873 https://doi.org/10.1002/(SICI)1097-0215(19991210)83:6<870::AID-IJC35>3.0.CO;2-9
  20. Sciandra, J. J. and J. R Subjeck. 1984. Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res. 44, 5188-5194
  21. Sekhar, K R, V. N. Sonar, V. Muthusamy, S. Sasi, A Laszlo, J. Sawani, N. Horikoshi, R Higashikubo, R G. Bristow, M. J. Borrelli, P. A Crooks, J. R Lepock, J. 1. Roti Roti, and M. 1. Freeman. 2007. Novel chemical enhancers of heat shock increase thermal radiosensitization through a mitotic catastrophe pathway. Cancer Res. 67, 695-701 https://doi.org/10.1158/0008-5472.CAN-06-3212
  22. Shinoda, c., M. Maruyama, T. Fujishita, J. Dohkan, H Oda, K Shinoda, T. Yamada, K Miyabayashi, R Hayashi, Y. Kawagishi, T. Fujita, S. Matsui, E. Sugiyama, A Muraguchi, and M. Kobayashi. 2005. Doxorubicin induces expression of multidrug resistance-associated protein 1 in human small cell lung cancer cell lines by the c-jun N-terminal kinase pathway. Int. J. Cancer 117, 21-31 https://doi.org/10.1002/ijc.21094
  23. Sun, C. 1. and C. C. Chao. 2005. Cross-resistance to death ligand-induced apoptosis in cisplatin-selected HeLa cells associated with overexpression of DDB2 and subsequent induction of cFLIP. Mol. Pharmacol. 67, 1307-1314 https://doi.org/10.1124/mol.104.008797
  24. Taniguchi, K, M. Wada, K Kohno, T. Nakamura, T. Kawabe, M. Kawakami, K Kagotani, K Okumura, S. Akiyama and M. Kuwano. 1996. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res. 56, 4124-4129
  25. Tokuda, H, M. Niwa, H. Ito, Y. Oiso, K Kato, and O. Kozawa. 2003. Involvement of stress-activated protein kinase/c-Jun N-terminal kinase in endothelin-1-induced heat shock protein 27 in osteoblasts. Eur. J. Endocrinol. 149, 239-245 https://doi.org/10.1530/eje.0.1490239
  26. Trieb, K, S. Lang, and R Kotz. 2000. Heat-shock protein 72 in human osteosarcoma: T -lymphocyte reactivity and cytotoxicity. Pediatr. Hematol. Oncol. 17, 355-364 https://doi.org/10.1080/08880010050034283
  27. Vakkila, J. and M. T. Lotze. 2004. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4, 641-648 https://doi.org/10.1038/nri1415
  28. Vanden Berghe, T., M. Kalai, G. Denecker, A Meeus, X. Saelens, and P. Vandenabeele. 2006. Necrosis is associated with IL-6 production but apoptosis is not. Cell Signal 18, 328-335 https://doi.org/10.1016/j.cellsig.2005.05.003
  29. Wang, L J. Y. Zhou, and G. S. Wu. 2007. ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Res. 67, 11933-11941 https://doi.org/10.1158/0008-5472.CAN-07-5185
  30. Wang, Z., R Gao, Y. Huang, B. Tian, and Y. Zhou. 2009. Effects of mitogen-activated protein kinase signal pathway on heat shock protein 27 expression in human lens epithelial cells exposed to sodium salicylate in vitro. J. Huazhong Univ. Sci. Technolog. Med. Sci. 29, 377-382 https://doi.org/10.1007/s11596-009-0323-x
  31. Welch, W. J. 1992. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev. 72, 1063-1081
  32. Xu, H., S. M. Choi, C. S. An, Y. D. Min, K C. Kim, K J. Kim, and C. H Choi. 2005. Concentration-dependent collateral sensitivity of cisplatin-resistant gastric cancer cell sublines. Biochem. Biophys. Res. Commun. 328, 618-622 https://doi.org/10.1016/j.bbrc.2005.01.015
  33. Xu, Z., Z. P. Chen, A Malapetsa, M. Alaoui-Jamali, J. Bergeron, A Monks, T. G. Myers, G. Mohr, E. A Sausville, D. A Scudiero, R Aloyz, and 1. C. Panasci. 2002. DNA repair protein levels vis-a-vis anticancer drug resistance in the human tumor cell lines of the National Cancer Institute drug screening program. Anticancer Drugs 13, 511-519 https://doi.org/10.1097/00001813-200206000-00010
  34. Yang, H, HWang, C. J. Czura, and K J. Tracey. 2005. The cytokine activity of HMGB1. J. Leukoc. BioI. 78, 1-8 https://doi.org/10.1189/jlb.1104648
  35. Yang, W. 1., G. Yang-Biggs, Y. Wu, X. Ye, G. Gallos, R P. Owen, and T. S. Ravikumar. 2003. Development of cross-resistance between heat and cisplatin or hydroxyurea treatments in FaDu squamous carcinoma cells. J. Surg. Res. Ill, 143-151
  36. Zong, W. X. and C. B. Thompson. 2006. Necrotic death as a cell fate. Genes Dev. 20, 1-15 https://doi.org/10.1101/gad.1376506

Cited by

  1. Apoptotic Effect of Pinosylvin at a High Concentration Regulated by c-Jun N-Terminal Kinase in Bovine Aortic Endothelial Cells vol.25, pp.4, 2015, https://doi.org/10.5352/JLS.2015.25.4.416