DOI QR코드

DOI QR Code

Increase of the D-chiro-inositol and D-Pinitol Contents by Abiotic Stress in the Buckwheat Seedlings

쓴메밀 유식물에서 비 생물학적 스트레스에 의한 D-chiro-inositol과 D-pinitol의 함량 증가

  • Ahn, Chul-Hyun (Department of Bioscience and Biotechnology, University of Suwon) ;
  • Park, Phun-Bum (Department of Bioscience and Biotechnology, University of Suwon)
  • 안철현 (수원대학교 생명공학과) ;
  • 박훤범 (수원대학교 생명공학과)
  • Published : 2009.10.30

Abstract

D-chiro-Inositol, which is the isomer of myo-inositol, is a well known drug for the treatment of type II diabetes. The methylated form of D-chiro-inositol, D-pinitol and D-chiro-inositol are synthesized when the plants are exposed to the abiotic stresses such as drought, salinity and low temperature as osmoprotectants. In soybean, myo-inositol is converted to ononitol by O-methyltransferase, and ononitol is converted to D-pinitol by ononitol epimerase and finally converted to D-chiro-inositol by demethylase. However there have been some reports that in buckwheat, myo-inositol can be converted to D-chiro-inositol directly. This study was conducted to determine the changes of soluble cyclitols in buckwheat seedlings after exposure to salt and drought stresses by GC-FID. The results indicated that myo-inositol may be the precursor of D-chiro-inositol biosynthesis.

myo-Inositol의 이성질체인 D-chiro-inositol은 제 2형 당뇨병에 탁월한 효과를 나타내고 있다. D-chiro-inositol의 methylated 형태인 D-pinotol과 D-chiro-inositol은 식물체가 가뭄, 염, 저온과 같은 비 생물학적 스트레스에 노출되게 되면 삼투보호물질로써 합성되어 축적되어 진다. 대두에서는 myo-inositol O-methyltrasnferase에 의하여 ononitol이 합성되고 ononitol epimerase에 의하여 D-pinitol이 합성되고 최종적으로 demethylase에 의하여 D-chiro-inositol이 합성되어 진다. 그러나 쓴메밀에서는 myo-inositol이 직접적으로 D-chiro-inositol로 합성되어 진다는 보고가 있다. 본 실험에서는 쓴메밀에 비 생물학적 스트레스를 처리한 후 cyclitols의 변화를 측정하였다. 그 결과 쓴메밀에서는 myo-inositol epimerase에 의하여 myo-inositol이 D-chiro-inositol로 직접 전환된다는 사실을 확인하였다.

Keywords

References

  1. Adams, P., J. C. Thomas, D. M. Vemon, H. Bohnert, and R. G. Jensen. 1992. Distinct cellular and organismic responses to salt stress. Plant and Cell Physiol. 33, 1215-1223
  2. Boyer, J. S. 1982. Plant productivity and environment. Science 218, 443-448 https://doi.org/10.1126/science.218.4571.443
  3. Delauney, A. J. and D. P. S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4, 215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  4. Flowers, T. J., P. F. Troke, and A. R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89-121 https://doi.org/10.1146/annurev.pp.28.060177.000513
  5. Gomes, C. I., R. L. Obendorf, and M. Horbowicz. 2005. myo-Inositot D-chiro-inositot and D-pinitol synthesis, transport, and galactoside formation in soybean explants. Crap Sci. 45, 1312-1319 https://doi.org/10.2135/cropsci2004.0247
  6. Hasegawa, P. M., R. A. Bressa, J. K. Zhu, and H Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. BioI. 51, 463-499 https://doi.org/10.1146/annurev.arplant.51.1.463
  7. Hong, Y. and Y. Pak. 2005. Effect of chiro-inositol from soybean on reducing hyperglycemia and its role for nutraceutic supplement for insulin resistance. Journal of Life Science 15, 197-201 https://doi.org/10.5352/JLS.2005.15.2.197
  8. Horbowicz, M., P. Brenac, and R. L. Obendorf. 1998. Fagopyritol B1, O-alpha-D-galactopyranosyl-(1-2)-D-chiroinositot a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta 205, 1-11 https://doi.org/10.1007/s004250050290
  9. Horbowicz, M., and R. L. Obendorf. 1994. Seed desiccation tolerance and storability: Dependence on flatulenceproducing oligosaccharides and cyclitols-review and survey. Seed Sci. Res. 4, 385-405
  10. Ishitani, M., A. L. Majumder, A. Bornhouser, C. B. Michalowski, R. G. Jensen, and H J. Bohnert. 1996. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9, 537-548 https://doi.org/10.1046/j.1365-313X.1996.09040537.x
  11. Kim, J. I., J. C. Kim, M. J. Kang, M. S. Lee, J. J. Kim, and J. J. Chao 2004. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in patients with type 2 diabetes mellitus: a Eur. J. Clin. Nutr. 59, 456-458
  12. Kennigton, A. S., C. R. Hilt J. Craig, C. Bogardus, I. Raz, H. K. Ortmeyer, B. C. Hansen, G. Romero, and J. Lamer. 1990. Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. New Eng. J. Med. 323, 373-378 https://doi.org/10.1056/NEJM199008093230603
  13. Lamer, J. 2001. D-chiro-inositol in insulin action and insulin resistance. IUBMB Life 51, 139-148 https://doi.org/10.1080/152165401753544205
  14. Louis, P. and E. A. Galinski. 1997. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halaphilus and osmoregulated expression in E. coli. Microbiol. 143, 1141-1149
  15. Loewus, F. A. and P. P. N. Murthy. 2000. myo-Inositol metabolism in plants. Plant Sci. 150, 1-19 https://doi.org/10.1016/S0168-9452(99)00150-8
  16. Ma, J. M., M. Horbowicz, and R. L. Obendorf. 2005. Cyclitol galactosides in embryos of buckwheat stem - leaf - seed explants fed D-chiro-inositot myo-inositol or D-pinito1. Seed Sci. Res. 15, 329-331 https://doi.org/10.1079/SSR2005221
  17. McCue, K. F. and A. D. Hanson. 1990. Drought and salt tolerance: Towards understanding and application. Biotechnol. 8, 358-362 https://doi.org/10.1038/nbt0490-358
  18. Niu, X., R. A. Bressan, P. M. Hasegawa, and J. M. Pardo. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol. 109, 735-742
  19. Nelson, D. E., G. Rammesmayer, and H. Bohnert. 1998. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10, 753-764 https://doi.org/10.1105/tpc.10.5.753
  20. Ono, H., K. Sawada, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinmyo, M. Takano, and Y. Murooka. 1999. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J. Bact. 181, 91-99
  21. Ortmeyer, H. K., L. C. Huang, L. Zhang, B. C. Hansen, and J. Lamer. 1993. Acute effects of D-chiro-inositol administration in streptozotocin-diabetic rats, normal rats given a glucose load, and spontaneously insulin-resistance rhesus monkeys. Endocrinol. 132, 646-651 https://doi.org/10.1210/en.132.2.646
  22. Pak, Y., C. R. Paule, Y. D. Bao, L. C. Huang, and J. Lamer. 1993. Insulin stimulates the biosynthesis of chiro-inositol obtaining phospholipids in a rat fibroblast line expressing the human insulin receptor. Proc. Natl. Acad. Sci. USA 90, 7759-7763 https://doi.org/10.1073/pnas.90.16.7759
  23. Romero, G. and J. Lamer. 1993. Insulin mediators and the mechanism of insulin action. Adv. Pharm. 24, 21-59 https://doi.org/10.1016/S1054-3589(08)60932-1
  24. Romero, G., L. Luttrell, A. Rogot K Zeller, E. Hewlett, and J. Lamer. 1998. Phosphatidylinositol-glycan anchors of membrane proteins: Potential precursors of insulin mediators. Science 240, 509-511
  25. Shen, B., R. G. Jensen, and H. Bohnert. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113, 1177-1183 https://doi.org/10.1104/pp.113.4.1177
  26. Sheveleva, E., W. Chmara, H. Bohnert, and R. G. Jensen. 1997. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana Tabacum L. Plant Physiol. 115, 1211-1219 https://doi.org/10.1104/pp.115.3.865
  27. Steadman, K. J., M. S. Burgoon, R. L. Schuster, B. A. Lewis, S. E. Edwardson, and R. L. Obendorf. 2000. Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J. Agric. Food Chem. 48, 2843-2847 https://doi.org/10.1021/jf990709t
  28. Streeter, J. G., D. G. Lohnes, and R. J. Fioritto. 2001. Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell and Environ. 24, 429-438 https://doi.org/10.1046/j.1365-3040.2001.00690.x
  29. Sze, H., X. Li, and M. G. Palmgren. 1999. Enegrization of plant cell membranes by $H^+$-pumping ATPases: Regulation and biosynthesis. Plant Cell 11, 677-689 https://doi.org/10.1105/tpc.11.4.677
  30. Taylor, S. I., D. Accili, and Y. Imai. 1994. Insulin resistance or insulin deficiency: Which is the primary cause of NIDDM. Diabetes 43, 735-740 https://doi.org/10.2337/diab.43.6.735
  31. Vernon, D. N. and H. J. Bohnert. 1992. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO. J. 11, 2077-2085 https://doi.org/10.1016/S0098-8472(96)01047-7
  32. Vernon, D. M. and H. J. Bohnert. 1992. Increased expression of a myo-Inositol methyl transferase in Mesembryanthemum crystallinum is part of a stress response distinct from crassulacean acid metabolism induction. Plant Physiol. 99, 1695-1698 https://doi.org/10.1104/pp.99.4.1695
  33. Vernon, D. M., J. A. Ostrem, and H. J. Bohnert. 1993. Stress perception and response in a facultative halophyte: The regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ. 16, 437-444 https://doi.org/10.1111/j.1365-3040.1993.tb00890.x
  34. Yancey, P. H., M. E. Clark S. C. Hand, R. D. Bowlus, and G. N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222 https://doi.org/10.1126/science.7112124
  35. Yoshida, K.T., T. Fujiwara, and S. Naito. 2002. The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiol. Plant 114, 581-587 https://doi.org/10.1034/j.1399-3054.2002.1140411.x

Cited by

  1. Biochemical Components and Physiological Activities of Ice Plant (Mesembryanthemum crystallinum) vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1732