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SOLVING A CLASS OF GENERALIZED SEMI-INFINITE
PROGRAMMING VIA AUGMENTED LAGRANGIANS
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ABSTRACT. Under certain conditions, we use augmented Lagrangians to
transform a class of generalized semi-infinite min-max problems into com-
mon semi-infinite min-max problems, with the same set of local and global
solutions: We give two conditions for the transformation. One is a neces-
sary and sufficient condition, the other is a sufficient condition which can
be verified easily in practice. From the transformation, we obtain a new

first-order optimality condition for this class of generalized semi-infinite
min-max problems.
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1. Introduction

We consider the class of generalized semi-infinite min-max problems of the
form

(P) min 4(2), 1)
where 1 : R™ — R is defined by
P(z) = sup ¢(z,y), (2)
yEZ(x)

where

Z(z) ={y € R"|f(z,y) < 0,9(y) <0},
¢:R*"xXxR™ - R, f: R"xR™ —» R™, g: R™ — R™, and v < 0 meaning
vt <0, -,v7 <0, for any v = (v', -+, v%) € R9. We use superscripts to denote
components of vectors.
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Let Y = {y € R™|g(y) < 0}, then (2) can be written as
P(z) = :gg{¢(w, ylf(z,y) <O} (3)

It is well known that generalized semi-infinite min-max problem (P) arises
in various engineering design and economic equilibria theory. It has become
an active field of research in applied mathematics. Note that it is the depen-
dence of the set-valued map Z(-) on the design variable x that makes (P) a
generalized semi-infinite min-max problem. It is difficult to solve (P) because
of the existence of Z(-), and there are only a few studies dealing with numer-
ical methods for (P). If the set-valued map Z(-) does not depend on the vari-
able x, i.e., Z(-)=Z, then (P) is a common semi-infinite min-max problem. For
cormmon semi-infinite problems, many effective algorithms have been proposed
(see [1],[2],[4],{10],[12]). Therefore, many scholars use penalty functions or aug-
mented Lagrangian functions to eliminate the constraints f(z,y) < 0in(3), and
then transform generalized semi-infinite min-max problems into common semi-
infinite min-max problems. For example, in [6], a nondifferentiable exact penalty
function is used to complete this transformation. Moreover, for this purpose, an
augmented Lagrangian function presented in [5] is used in [3]. This approach
requires stronger assumptions than the ones in [6], but gives rise to an equivalent
common semi-infinite min-max problem which is much easier to solve.

In this paper, we use a class of augmented Lagrangian functions (see [9]) to re-
move the constraints f(z,y) < 0 and transform (P) into a common semi-infinite
min-max problem. The essentially quadratic augmented Lagrangian function in
[3] is a special case of this class of augmented Lagrangian functions. We give two
conditions for the transformation. One is a necessary and sufficient condition
which is different from the one in [3], the other is a sufficient condition which can
be verified easily in practice. Compared with 3], our conditions have the follow-
ing characteristics:(1)They do not need the compactness of Y. (2)The sufficient
condition is milder than the one in [3] and it does not require the uniqueness of
arg Ienzaix) ¢(x,y). Based on this, we give a new first-order optimality condition

¥ x

for (P).

This paper is organized as follows. In Section 2, we use a class of augmented
Lagrangian functions in [9] to transform (P) into a common semi-infinite min-
max problem. To complete this equivalent transformation, we give a necessary
and sufficient condition and a sufficient condition. In Section 3, we show that
the resulting problem is equivalent to (P). In the process we get a new first-order
optimality condition for (P).

2. Augmented Lagrangian function

Now we transform (P) into a common semi-infinite min-max problem by using
the class of augmented Lagrangian functions in [9]. We define ¢ : R**"+1 » R
to be given by

P(Z) = sup §(Z,y), 4)
yey
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where T = (z,\,¢) € R**"* withz € R*, A>0,¢> 0, and
(st

3@y =o@my)— =3 min  wr 46}, (5)

k
c k=1 T>cfk(z,y)

where 6 : R — R satisfies the following conditions:
(¢) 0 is twice continuously differentiable and convex on R ;

(i1) 6(0) = 0,6'(0) = 0.6"(0) > 0;

(1) G — 400, (|s| — +00).
When setting 6(s) = %32, this special case of (5) becomes the essentially qua-
dratic augmented Lagrangian function in [3].

We define R]* = {\ € R™| A > 0} and R4 = {s € R| s > 0}.

Then we obtain a common semi-infinite min-max problem:

min D(z) (6)

ZER™XR xRy
In the following, we study the relation between (Z) and ¥(z).

Assumption 1. We assume that

@) o), f*¢,), k € ry = {1,...,m1}, and g*() , k € ro = {1,...,r2} are
continuous, and

(i1) Z(z) # 0 for all x € R™.
First, we have the next result.

Theorem 1. Suppose that Assumption 1 holds. Then for all T = (z, )\, ¢) €
R"x R[* x Ryy, we get

(@) > Y(2). (7)

Proof. Suppose that ¥(Z) = +oo, then (7) holds obviously. We assume P(T) <
+00, then

T1

T@ = swpldley)—=3 min  wr 0}

yey €7 ey
1 &
> su T,y)— — min MeT + OO HFF(z,y) <O,VE Er
suplo(e)= 230 min Our+ 60N @0 1}
1<
> sup{g(e,y) = >_ (- 0+0(O0)If*(@,y) <O, Vk € r1}

ve k=1

= sup{¢(z,y)|f*(z,y) <0,Vk € r1}
YyeY

= P(z).
This completes the proof. g



368 Haiyan Zhang, Fang Liu and Changyu Wang

Next, we find a necessary and sufficient condition for the existence of A and
¢ that ensure equality in (7).
For this purpose, we define

v(z,T) = SUP{¢($> y)|fk(a:, y)<7,Vke r1}3 (8)
yeyY

where v(z,T) = —o0, if {y € Y|f*(z,y) < m,Vk eri} =0.
1
1
N(X e d6)={r € Rlv(z,T) — Z()\kﬁ' + EG(CT)) > 6},
k=1
Condition (A). Let € R and there exist X > 0, € > 0 and a neighborhood
1'(0) of zero such that
T

@) v(z,7) - gl(fm + 16(er)) < v(=,0) for any T € T(0);

(i5) there exists 6y < P(x, A, €) such that inf{6(7)|r € N(},Z,0)} = 0 for any
5 € [60) w(xa A,E))
Theorem 2. Suppose that Assumption 1 holds. Then, for any fized z € R",
there exist A € R} and € € Ry, such that

'(/J(ﬁ) = E(.‘E, Xa C) (9)

for all ¢ > ¢ if and only if Condition(A) holds.
Proof. Necessity. Suppose that A € R and ¢ € Ry satisfy ¢(z) = Pz, N, ),
ie., -

v(z,0) = ¥(z, A, ). (10)
Next, we will show that (i) holds. For any 7 € T'(0), suppose that {y €
Y|f*(z,y) < 7,Vk € r1} = 0, then v(z,7) = —oo. Now (i) holds obviously.
Otherwise, we have

v(x,0) = P(z,\9

1

1 -
= i — i )\ + 9
Sg}xg{é(w V)~ §= S T (T3}

= igg{qb(x,y) - kz: min y){XkT + %0(6’:’)}}

— 2f*(,

v

sup{¢(z,y) — Y _{ N7+ ia(af-)}lf > f*(z,y),Vk € r1}
yeY =1 C

= sup{$(@ )| fF@,y) < FVkEr} - 3 (T + 267}
yeyY Py C

= ofa) - S+ 26(en)}
k=1
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From the arbitrariness of 7, we know that (i) holds.
By (10) and the definition of N(}, ¢, ), for any § < ¢(z, A, ¢), we have
0e N(X\,g0).
Furthermore, we can obtain from the properties of 6(7) that 6(r) > 0 when
7 # 0 and 6(0) = 0 when 7 = 0. Therefore, for any § < ¥(x, A, ¢), we get
inf{8(r)|r € N(\,&,8)} = 0.
i.e., (i) holds. L
Sufficiency. Suppose that Condition (A) holds. Let {§;} / #¥(z, A, ¢) and

{g;} \\ 0 as j — +oo. From (ii), for any j € {1,2,3,...}, we know there exists
75 € N(X, T, 8;) such that

9(7’]’) S &?j .
From the properties of 6(r), we get .liga 7; = 0. Then, 7; € ['(0) as j is large
Jsboo

enough. Hence, in view of (i), we have

T1 B 1
8 < vl ) — > _{m; + ~6(em)} < v(z,0).
k=1

Then we get
¥(z, A6 = lim §; < v(z,0) = (z).
Jor o0
Therefore, by Theorem 1, we obtain ¥(z) = ¥(x, X, ). From [9], we know
1 T
- min  {Ax7+0(7)}

k
€ r2eit (@)

is a nondecreasing function with respect to c, then 1)(Z) is a nonincreasing func-
tion with respect to c. Therefore, by Theorem 1, for all ¢ > ¢, we have

W(x) =p(z, A ).
This completes the proof. O

Although Condition(A) is a necessary and sufficient condition, it is difficult
to verify it in practice. In the following, we give a sufficient condition which can

be verified easily in practice.
For o > 0, we define
G(z,a) = {y € Y| f¥z,y) < a,Vk € 11},

F(z,a)={y € Y| é(z,y) > v(z,0) — a}.
We also define

Y (x) = argmax{¢(z,y) |/*(z,y) <0,k € r1}.
yey
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Second-order sufficient conditions. Suppose that ¢(-,-), f*(-,+), k € r1 are
twice continuously differentiable functions. Let x € R, y* € R™ and \* > 0
such that

Vyd(@,y*) = 3 AV i@, y) =0,

k=1
M, y*) =0,k €ery.
and the Hessian matriz

Viyd(e,y*) — Z)‘k oS (@ y)
18 negative definite on the cone

M(z,y*) = {de R™,d#0

V¥ (@,y*)Td =0,k € J(z,y"), }
Vyf*@,y)Td <0,k € I(z,y)\ J(x,y") [’

where
I(z,y*) = {k € r1|f*(z,y*) = 0},
I(z,y") = {k € I{z,y")|A; > 0}

Next, we give the sufficient condition.

Condition(B). Suppose that x € R™ satisfies the following conditions:
(3) sup é(z,y) < +o0.
vey :
(#) Y (z) # 0 and there ezists \* > 0 such that for any y* € Y(z), (z,y*, X*)

satisfies second-order sufficient conditions.
(45) There exists ag > 0, such that G(z, o) () F(z, o) is bounded.

In view of the existence theorems for a global saddle point in {11}, we get the
next theorem.

Theorem 3. Suppose that x € R"™ satisfies Condition(B). Then, there exists
¢* > 0 such that for all ¢ > c*, we have

'QZJ(CE) = "Z’(xa A5, c)'

Proof, Suppose that x € R" satisfies Condition (B). From the corresponding
theorem in [11], we know that for any y* € Y (z), there exists c* > 0 such that

$((z, A, 0),9%) 2 B((x, X", 0),4") 2 (2, X", ¢),9) (11)
foralle>c*,anyyeY and X 2 0.
From the first inequality given above and f*(z,y*) < 0(Vk € ry), for all ¢ > ¢,
we have

- Z min {)\27’ +6(t)} =0. (12)

1 T2efR(@yr)
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Then by the definition of ¢(Z,y), we get

q_S((x,/\*,c),y*) = ¢("E7y*)' (13)
From the second inequality of (11), we know
»(x, X, ) = §((x, A", 0),¥")- (14)

By (13)(14) and y* € Y (z), we know there exists ¢* > 0 such that for all ¢ > ¢*,
we have

P(x) = ¥(z, A", ¢).
This completes the proof. O

From Theorem 1 and Theorem 2(or Theorem 3), we obtain the following when
Condition (A)(or Condition (B)) holds at x€ R™,

Ylz) = min ¥(z, X ). (15)
3. Equivalent problem and first order optimality conditions

In view of (15), we can find that problem (P') is equivalent to (P). Let for
any £ € R™ and p > 0, B(%,p) = {z € R"||lz — &| < p}.

Theorem 4. Suppose that Assumption 1 holds. Then, the following hold:

(4) If £ € R™ is a local minimizer for (P) with domain of attraction B(Z, p)
and Condztzon(A)(or Condition(B)) holds at Z, then there exist X>0andé>0
such that T = (T, by ¢) is a local minimizer for (P') with domain of attraction
B(ﬂ? p) X R X R++

(i) If % = (%,/):,’c) is a local minimizer for (P') with domain of attrac-
tion B(Z,p) x R x Ry and Condition(A)(or Condition(B)) holds at any
z € B(Z, p), then T € R™ is a local minimizer for (P) with domain of attraction
B(z,p).

(#4) If Condition(A)(or Condition(B)) holds at any © € R™, then (P) and
(P') have the same optimal value, i.e.,

min Y(z) = min B(T). (16)
zER™ fiER"’XR:l XRyy

Proof. (i) Since & € R™ is a local minimizer for P , we have

Y(x) > P(2) (17)
for any @ € B(Z, p).

Since Condition (A)(or Condition(B)) holds at Z, there exist A>0andé>0
such that

W(E) = P(, ) ). (18)
From Theorem 1, for any £ € R™, A > 0, ¢ > 0, we have

&(x’A7 c) > (). (19)
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From (17)(18) and (19), for any z € B(Z, p), A > 0 and ¢ > 0, we obtain
Uz, X ¢) > (£, 2,0).
e, T = (z, X, ¢) is a local minimizer for (P’) with domain of attraction B(Z, p) x
R:_l X R++.
(ii) Suppose that Condition(A)(or Condition(B)) holds at any z € B(Z, p).
Let z* € B(%, p) be arbitrary, then there exist A* > 0 and ¢* > 0 such that
P(z*) = P(z*, X, c*).
Furthermore, Since (&, ), &) is a local minimizer for (P'), we get
P(z*, N*, %) (2, A, &)
B, PEA)

= 9%(&)

Then for any z* € B(Z,p), we have ¢¥(z*) > ¥(Z). ie. T € R" is a local
minimizer for (P) with domain of attraction B(Z, p).
(iii) Since Condition(A){or Condition(B)) holds at any z € R™, we have

2
2

¥(z) =, min $(z, ).
Then (16) holds. This completes the proof. O

The most important part in Theorem 4 is conclusion(i), because 8 first-order
optimality condition for (P) can be deduced from it.

Assumption 2. We assume that

(&) 8(,"), f¥(-,), k € r1 and g*(-), k € r2 are continuously differentiable,
and

(48) Y is compact.

Suppose that Assumption 2 holds, then (P’) is a common semi-infinite min-
max problem, and the corresponding optimality condition is available (see [2]).

Theorem 5. Suppose that Assumption 2 holds. If T = (%, '):, ¢) € R"xXR!XRyy
is ¢ local minimizer of (P'), then

w(%_; (=, y)
- Vo9(Z,y)

vA?(?z y)

Vo (T,y)

0 € GP(Z) = convyey

In view of Theorem 2(or Theorem 3), we deduce the following new optimality
condition for (P).
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Theorem 6. Suppose that Assumption 2 holds. If £ € R™ is a local minimizer
of (P) and Condition(A)(or Condition(B)) holds at £ € R™, then there exist
A2 0 and € > 0 such that

0 € GY(z),
where T = (2,1, 7).
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