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ON THE SUBDIFFERENTIAL OF A NONLINEAR
COMPLEMENTARITY PROBLEM FUNCTION WITH
NONSMOOTH DATA

YAN GAO

ABSTRACT. In this paper, a system of nonsmooth equations reformulated
from a nonlinear complementarity problem with nonsmooth data is studied.
The formulas of some subdifferentials for related functions in this system
of nonsmooth equations are developed. The present work can be applied
to Newton methods for solving this kind of nonlinear complementarity
problem.
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1. Introduction

Consider the nonlinear complementarity problem

F(z)>0,2>0,2TF(z) =0, 1)
where F : ®* — R™ is a given map. We denote F(z) = (fi(z),..., fa(z))T,
z = {(21,...,Zy). The complementarity problem (1) is to find a solution z € R,

which satisfies (1). The Fischer-Burmeister nonlinear complementarity problem
(for short NCP) function, see [2], is defined as the following:

d(a.b)=+va?+b%—a—b.

By the NCP function ¢, the nonlinear complementarity problem (1) can be
reformulated as the following

¢, fi(z)) = 0,i=1,...,n. (2)
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In other words, € R™ is a solution of (1) if and only if it is one of (2). Evidently,
(2) is a system of nonsmooth equations even if each f; is smooth.

Recently, Newton methods for a solution of nonsmooth equations are applied
to solving the nonlinear complementarity problem. However, most work is re-
lated to the case that F is continuously differentiable, to our knowledge, only [3,
4, 7] dealt with the case that F is nonsmooth function. In the present paper, we
try to consider the problem when F is locally Lipschitzian function. The formu-
las of subdifferentials for the functions in the left hand of (1) are investigated.
By using these formulas, we can compute the B-differential or the Clarke gener-
alized gradient of each ¢(z;, fi(x)). This work can be used in Newton methods
for solving the nonsmooth equations (2).

Throughout the paper, e; denotes the unit vector in R™ whose i-th component
is 1, B{z, 1) the unit ball with = as its center, Dy the set where function H is
differentiable, x; the i-th component of z, d; i-th component of d.

2. Preliminaries
Let H : R™ — R™ be locally Lipschitzian. By the definition in [1, 6],
OpH(z) = {;mé JH(y) | zp — z,y € Dy}

is called the B-differential of H; 8ciH(z) = codpH(x) is called the Clarke
generalized Jacobian of F'; when H is from R" to R, 8¢ H (z) is said to be the
Clarke generalized gradient.

As in [6], the locally Lipschitzian function H : R" — R"™ is said to be semis-
mooth at z if ‘

Vh~H'(z;d) = o(|dll), V € ciF(x +d).
Let us consider the nonsmooth equations:
H(z) =0, (3)

where H : ®* — R" is locally Lipschitzian. Newton method for solving the
nonsmooth equations (3) is given by

D = ok Ve (), @

where V; is an element of dpH(z*), o H(zF), dciha(z®) x -+ x Bcrthn(z®)
or 8phi(z¥) X - -+ x dghn(z*). The locally superlinear convergence of Newton
methods were shown when F is semismooth and all elements of corresponding
subdifferentials of H at the solution are nonsingular.

Fischer-Burmeister NCP function has properties as follows [2]:

1. ¢{a,b)=0<=a>0,b>0,ab=0;

2. the square of ¢ is continuously differentiable;

3. ¢ is twice continuously differentiable at every point except the origin, but
it is strong semismooth at the origin.
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If a # 0 or b+ 0, then ¢ is continuously differentiable at (a,b) € R? with

Vo(a,b) = (\/a2a+ = - 1, \/a2b+ =~ 1T, (5)

The following proposition can be found in {5].

Proposition 1. Let f,g : R* — R be directionally differentiable and let
G(z) = ¢(f(x),g(z)). Then, G is directionally differentiable and its directional
derivative is of the form:

7 T _ f('r) _ ! xr: g(m) . ! T
D= rem O Trmraw Y

if (f(z),9(x)) #0;
G'(2;d) = ¢(f'(z;d), ¢'(z; ) if (f(2), 9(x)) = 0;
Moreover, if both f and g are differentiable ot z, then
V6(E) = (ol )9 1) + (i~ 1)Vg()
f2(z) + g(z) f2(z) + 9% (z)
if (f(z), 9(z)) # 0.

~—

3. The formulas of subdifferentials of related functions

To perform Newton method for solving the system of nonsmooth equations
(5), an element of some subdifferential of the function in the left hand side of
(5) is required at each interactive step. In this section, we proceed to investigate
the structure of the B-differentials or the Clarke generalized for the functions:

Gi(z) = d(zy, filx)),i=1,... ,n.

By virtue Proposition 1, we have that

! i fl(x) !
Glz;d) = (—————eee — 1)d; + (———— — 1) fi(z;d
if (i, fi(x)) #0; (6)

If f; is differentiable, then

LT e () i
T T e VR

if (z4, fi(z)) # 0. Y|
Lemma 1. Let f; : ®* — R be locally Lipschitzian and directionally differen-
tiable. If x; = 0 and fi(z) > 0, then G; is differentiable at x with the gradient
VG¢($) = —€;.

Proof. Since z; = 0 and f;(z) > 0, by (6), we have Gj(z;d) = —e;. Therefore,
G!(z;-) is linear function. This means that G; is differentiable at = with the
gradient —e;. |

VGi(z) = (
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Lemma 2. Let f; : R* — R be locally Lipschitzian and directionally differen-
tiable. If x; = 0 and f{z) <0, then G; is differentiable at z if and only if f; is
differentiable at z. Moreover, VG;(z) = =2V fi(z) if z; =0 and f;(z) <O0.

Proof. Since z; = 0 and fi(z) < 0, by (8), we have Gi(z;d) = —2f!(z;d).
Thus, the function G’(x;-) is linear if and only if so is f/(x;-). Therefore, G;
is differentiable if and only if f; is differentiable. When G is differentiable, it is
easy to see that VG;(z) = -2V f;(z). O

Theorem 1. Let f; : R" — R be locally Lipschitzian and directionally differen-
tiable. If (z;, fi(x)) # 0, then
Ty

Proof. The proof is divided into three cases.
(I) Suppose z; # 0. For a fixed z, the function Gj(z;-) is linear if and only

et (\/7%% “)osfila).  ®

98Gi(z) = (

if so is (—fﬂ— — 1)f{(x; ) since the first part of the right hand side of
Vi + fiz)
(6) is a linear function. Notice that (___I,;(m_)__ — 1) # 0 because of z; # 0.

Vi + fi(z)
__fl® 1)f{(x;-) is linear if and only if so is
Vi + (@)
fi(z;-). We know that the function f/(z;-) for a fixed z is linear if and only
if f; is differentiable at z. Hence, G is differentiable at z if and only if f; is
differentiable at z. In other words, Dg, = Dy,. In the differentiable case, the
gradient of G; is given as in (7). By the definition of the B-differential, (7) and
Dg, = Dy,, and noticing that y; # 0 when y near ¢ enough because of z; # 0,
we have that :

98Gi(z) = {lim VGi(y) | y — =,y € Do, }

Therefore, the function (

= 3’—’3{(ﬁ ~1)e; + (\/ff_z—l—*—(L—‘—j_Jé(y) - DVfi(y) |y — z,y€ Dy}

= e e U s Do)

(e - Vet <—ﬁ~f:f;—() — 1)0pfi(a).

(1I) Suppose z; = 0 and f;(z) > 0. By the definition of the B-differential, we
e 98Gi(x) C {lim VGi(y) |y — 7,y € Do,y = 0}

U{éi-»“é VGi(y) |y — z,y € Dg,, i # 0} 9
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Noticing that f;(y) > 0 when y near z enough because of the continuity of f;,
according to Lemma 1, it is obtained that

By the definition of the B-differential, (7) and D¢, = Dy,, and noticing that
z =0 and y; # 0, we have

{éﬁvai(y) |y — 2,y € Dg,,y: # 0}

T STV |1 () I PR TR .
-{"!}—I}?E( yz +f3(y) 1) 'L+( yf—l—ff(y) 1)Vf'6(y) 1 y :L‘)yé Df@?y’L 740}
I T @) viim v o .
= 0 Lei+( 0 D{lim V£i(y) |y = 7,y € Dy, s # 0}
_ Ti e fils) () = (o) (since 1 —
= T 0 Dz+(ﬁ+ﬁ@ 1)0pfi(z) = {—e} (since z = 0).

(11)
Combing (9) with (10) and (11) yields 9pG,(z) = {—e;}. Notice that

i fil=)
e} = (e 1)y + (2 1)0Rfi(a)
ted <\/a:f+fi2(m) et 22+ f2(z) )
if z; = 0. Hence, (8) holds if z; = 0, f;(z) > 0.
(I1I) Suppose z; = 0 and fi(z) < 0. Noticing that f;(y) < 0 when y near

z enough because of the continuity of f;, according to Lemma 2, it is obtained
that

{lim VGi(y) |y — 2,y € Do,y = 0} = {2V fil2)}. (12)
Likewise to (11), it is obtained that
{2}1_13‘702(?/) I y—Iye DGﬂ?f"i 7é O}

Z; fi(z)
=(—m————— 1l + (————2—— — 1) fi(z
(x/x?+f?(:c) it 7} + fi(z) 2 5()
= {=2Vfi(2)} (since x = 0). (13)

Combing (9) with (12) and (13) leads to 9pG;(z) = {-2V fi(z)}. Evidently,
V() = (e 1) 4 (2B
{=2Vfilx)} = ( T ) Dei + ( T )

if z; = 0. Therefore, (8) holds if z; = 0, fi(z) < 0. Thus, the proof of the
theorem is completed. O

—1)0sfi(x)

In what follows, we discuss the Clarke generalized gradient of G;(z) at the
point where (z;, f(x;)) = 0.
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Theorem 2. Let f; : R"® — R be locally Lipschitzian and directionally differen-
tiable. If (z4, fi(z)) = 0, then

0c1Gi(z) = U co(¢ — 1)e; + (n— 1)0cifi(z). (14)
£24n?=1

Proof. Let f : R™ — R be locally Lipschzian. According to [1], the Clarke
generalized gradient of f at x is expressed as the following

dcif(z) = CO{?}E{;Vf(y) ly—xz,y€Dsy¢Q},

where Q is any set in R® whose measure is zero. Choosing Q@ = {y € ®" | y; = 0}
and by deducing, it follows that

0ciGi(zx) = oo{g}i_gxgc VGi(y) |y — =,y € Dg,,y: # 0}

= l' ———L—-——lz ——i(y)_———lvz - ’ D‘9

cof fm(—mrmrs — Ves + (o s = UVAW) [y = 2y € s
Yi # 0}
¢ U eoflm((n- e+ (€ - DVAW) |y~ 2,9 € Dy s # 0}
&24n?=1

= U (€ = es + (n — 1)dcufi(x).
£24n?=1

Thus, (14) holds. The proof of the theorem is completed. ]

4. An application to Newton methods

Based on Theorems 1 and 2, we can use the Newton method (4) to solve
the equation {2). In this method, we need compute the subdifferential of each
function fi(z). If fi(z),i = 1,...,n are semismooth, we can get the suplinear
convergence of Newton method.
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