DOI QR코드

DOI QR Code

Intracullular Functions of the mas2+ Gene in the Fission Yeast, Schizosaccharomyces pombe

분열형 효모에서의 mas2+ 유전자의 세포 내 기능

  • Sin, Sang-Min (Faculty of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Cha, Jae-Young (Faculty of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Ha, Se-Eun (Faculty of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Sim, Sun-Mi (Faculty of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Kim, Hyoung-Do (Faculty of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Lee, Jung-Sup (Department of Biological Science Research Center for Proteineous Materials, Chosun University) ;
  • Park, Jong-Kun (Faculty of Biological Science and Research Institute for Basic Science, Wonkwang University)
  • 신상민 (원광대학교 생명과학부, 기초자연과학연구소) ;
  • 차재영 (원광대학교 생명과학부, 기초자연과학연구소) ;
  • 하세은 (원광대학교 생명과학부, 기초자연과학연구소) ;
  • 심선미 (원광대학교 생명과학부, 기초자연과학연구소) ;
  • 김형도 (원광대학교 생명과학부, 기초자연과학연구소) ;
  • 이정섭 (조선대학교 BK21 단백질활성제어 인력양성 사업팀) ;
  • 박종군 (원광대학교 생명과학부, 기초자연과학연구소)
  • Published : 2009.01.30

Abstract

The regulation of gene expression plays an important role in cell cycle controls. In this study, a novel $mas2^+$ (mitosis associated protein) gene, a homolog of human SMARCAD1 was isolated and characterized from a fission yeast Schizosaccharomyces pombe (S. pombe) using gene-specific polymerase chain reaction. The isolated gene contained a complete open reading frame capable of encoding 922 amino acid residues with a typical promoter, as judged by nucleotide sequence analysis. It was also found that an SNF2 domain is located, which is involved in the chromosome remodeling. The quantitative analysis of the $mas2^+$ transcript against $adh1^+$ showed that the expression level of $mas2^+$ is high before septum formation in S. pombe. When $mas2^+$ null mutant cells were grown at 27 and $35^{\circ}C$, the cytokinesis of $mas2^+$ null mutant was greatly delayed and a large number of multi-septate and mis-segregated cells were produced. In addition, the number of multi-septate cells significantly increased. When cells were cultured in YES rich medium to increase proliferation, the abnormal phenotypes $mas2^+$ null mutant dramatically increased. These phenotypes could be rescued by an over-expression of the mast gene. The Mas2 protein localized in the nuclei of S. pombe, as evidenced by Mas2-EGFP signals. These results suggest that the $mas2^+$ is homologous to human SMARCAD1 gene and involved in septum formation and chromosome remodeling control.

유전자 발현의 조절은 세포주기 조절에 중요한 역할을 한다. 본 연구에서 새로운 $mas2^+$ (${\underline{m}}itosis$ ${\underline{as}}sociated$ protein) 유전자는 인간의 SMARCAD1와 상동성을 갖고 분열형 효모인 Schizosaccharomyces pombe (S. pombe)에서 gene-specific PCR 방법에 의해서 분리하였다. 분리된 유전자는 SNF2 도메인이 위치해 있고, 이것은 염색체 재구성에 관련되어 있다. $adh1^+$을 이용한 $mas2^+$ 전사체의 발현량 분석은 $mas2^+$의 발현수준은 S. pombe에서 격막 형성 전에 가장 높았다. $mas2^+$ 완전돌연변이의 세포분열은 26와 $35^{\circ}C$에서 지연되는 현상이 보였고, 다수익 다중 격막이나 핵분열이 일어나지 않는 세포들을 발견하였다. 세포들을 완전배지인 YES에서 증식을 증가시키기 위해서 배양했을 때, 정상과 다른 형태의 표현형을 가진 $mas2^+$ 완전돌연변이 세포들이 증가했다. 이런 표현형들은 $mas2^+$ 유전자의 과발현에 의해서 감소하였다. Mas2 단백질은 S. pombe의 핵내에 위치하였다. 이런 결과들은 $mas2^+$가 인간의 SMARCAD1과 상동성을 갖고 있고, 염색체 재구성과 격막 형성 조절에 사용된다는 것을 나타낸다.

Keywords

References

  1. Auble, D. T. and S. M. Steggerda. 1999. Testing for DNA tracking by MOT1, a SNF2/SWI2 protein family member. Mol. Cell Biol. 19, 412-423
  2. Auble, D. T., K. E. Hansen, C. G. Mueller, W. S. Lane, J. Thorner and S. Hahn. 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8, 1920-1934 https://doi.org/10.1101/gad.8.16.1920
  3. Auble, D. T., D. Wang, K. W. Post and S. Hahn. 1997. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol. Cell Biol. 17, 4842-4851
  4. Burns, L. G. and C. L. Peterson. 1997. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol. Cell Biol. 17, 4811-4819
  5. Cairns, B. R., Y. J. Kim, M. H. Sayre, B. C. Laurent and R. D. Kornberg. 1994. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91, 1950-1954 https://doi.org/10.1073/pnas.91.5.1950
  6. Coin, F., E. Bergmann, A. Tremeau-Bravard and J. M. Egly. 1999. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18, 1357-1366 https://doi.org/10.1093/emboj/18.5.1357
  7. Cote, J., J. Quinn, J. L. Workman and C. L. Peterson. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science. 265, 53-60 https://doi.org/10.1126/science.8016655
  8. Ding, D. Q., Y. Tomita, A. Yamamoto, Y. Chikashige, T. Haraguchi and Y. Hiraoka. 2000. Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes Cells 5, 169-190 https://doi.org/10.1046/j.1365-2443.2000.00317.x
  9. Delmas, V., D. G. Stokes and R. P. Perry. 1993. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc. Natl. Acad. Sci. USA 90, 2414-2418 https://doi.org/10.1073/pnas.90.6.2414
  10. Deuring, R., L. Fanti, J. A. Armstrong, M. Sarte, O. Papoulas, M. Prestel, G. Daubresse, M. Verardo, S. L. Moseley, M. Berloco, T. Tsukiyama, C. Wu, S. Pimpinelli and J. W. Tamkun. 2000. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355-365 https://doi.org/10.1016/S1097-2765(00)80430-X
  11. Du, J., I. Nasir, B. K. Benton, M. P. Kladde and B. C. Laurent. 1998. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics 150, 987-1005
  12. Ellis, N. A. 1997. DNA helicases in inherited human disorders. Curr. Opin. Genet. Dev. 7, 354-363 https://doi.org/10.1016/S0959-437X(97)80149-9
  13. Felsenfeld, G. 1996. Chromatin unfolds. Cell 86, 13-19 https://doi.org/10.1016/S0092-8674(00)80073-2
  14. Fryer, C. J. and T. K. Archer. 1998. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393, 88-91 https://doi.org/10.1038/30032
  15. Gutz, H. and F. J. Doe. 1975. On homo- and heterothallism in Schizosaccharomyces pombe. Mycologia 67, 748-759 https://doi.org/10.2307/3758336
  16. Huang, S., B. Li, M. D. Gray, J. Oshima, I. S. Mian and J. Campisi. 1998. The premature ageing syndrome protein, WRN, is a 39 3 59 exonuclease. Nat. Genet. 20, 114-116 https://doi.org/10.1038/2410
  17. Gavin, I. J. H. Peter and L. P. Craig. 2001. SWI/SNF Chromatin Remodeling Requires Changes in DNA Topology. Mol. Cell. 7, 97-104 https://doi.org/10.1016/S1097-2765(01)00158-7
  18. Kanaar, R., C. Troelstra, S. M. Swagemakers, J. Essers, B. Smit, J. H. Franssen, A. Pastink, O. Y. Bezzubova, J. M. Buerstedde, B. Clever, W. D. Heyer and J. H. Hoeijmakers. 1996. Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation. Curr. Biol. 6, 828-838 https://doi.org/10.1016/S0960-9822(02)00606-1
  19. Kohli, J, H. Hottinger, P. Munz, A. Strauss and P. Thuriaux. 1977. Genetic Mapping in Schizosaccharomyces pombe by Mitotic and Meiotic Analysis and Induced Haploidization. Genetics 87, 471-489
  20. Kristen, E. N. and L. W. Jerry. 2002. The complexity of chromatin remodeling and its links to cancer. Biochim. Biophys. Acta. 1603, 19-29 https://doi.org/10.1016/S0304-419X(02)00067-7
  21. Laurent, B. C., I. Treich and M. Carlson. 1993. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7, 583-591 https://doi.org/10.1101/gad.7.4.583
  22. Lohman, T. M. and K. P. Bjornson. 1996. Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169-214 https://doi.org/10.1146/annurev.bi.65.070196.001125
  23. Maundrell, K. 1993. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 123, 127-130 https://doi.org/10.1016/0378-1119(93)90551-D
  24. Muchardt, C. and M. A. Yaniv. 1993. Human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279-4290
  25. Nurse, P. 1990. Universal control mechanism regulating onset of M-phase. Nature 344, 503-508 https://doi.org/10.1038/344503a0
  26. Peterson, C. L. 1996. Multiple switches to turn on chromatin? Curr. Opin. Genet. Dev. 6, 171-175 https://doi.org/10.1016/S0959-437X(96)80047-5
  27. Peterson, C. L., A. Dingwall and M. P. Scott. 1994. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. USA 91, 2905-2908 https://doi.org/10.1073/pnas.91.8.2905
  28. Peterson, C. L. and J. W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20, 143-146 https://doi.org/10.1016/S0968-0004(00)88990-2
  29. Richmond, E., and C. L. Peterson. 1996. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res. 24, 3685-3692 https://doi.org/10.1093/nar/24.19.3685
  30. Schoor, M., S. G. Karin, R. Derry and A. Gossler. 1999. Skeletal dysplasias, growth retardation, reduced postnatal survival, and impaired fertility in mice lacking the SNF2/SWI2 family member ETL1. Mech. Dev. 85, 73-83 https://doi.org/10.1016/S0925-4773(99)00090-8
  31. Tom, O. H., R. T. Utley, J. Cote, C. L. Peterson and J. L. Workman. 1996. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513-516 https://doi.org/10.1126/science.273.5274.513
  32. Utley, R. T., J. Cote, O. H. Tom and J. L. Workman. 1997. SWI/SNF Stimulates the Formation of Disparate Activator-Nucleosome Complexes but Is Partially Redundant with Cooperative Binding. J. Biol. Chem. 272, 12642-12649 https://doi.org/10.1074/jbc.272.19.12642
  33. Varga-Weisz, P. D., M. Wilm, E. Bonte, K. Dumas, M. Mann and P. B. Becker. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598-602 https://doi.org/10.1038/41587
  34. Villard, L., A. M. Lossi, C. Cardoso, V. Proud, P. Chiaroni, L. Colleaux, C. Schwartz and M. Fontes. 1997. Determination of the genomic structure of the XNP/ATRX gene encoding a potential zinc finger helicase. Genomics 43, 149-155 https://doi.org/10.1006/geno.1997.4793
  35. Weeda, G., E. Eveno, I. Donker, W. Vermeulen, O. Chevallier-Lagente, A. Taieb, A. Stary, J. H. Hoeijmakers, M. Mezzina and A. Sarasin. 1997. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet. 60, 320-329 https://doi.org/10.1093/hmg/11.23.2919
  36. West, S. C. 1996. DNA helicases: New breeds of translocating motors and molecular pumps. Cell 86, 177-180 https://doi.org/10.1016/S0092-8674(00)80088-4
  37. Whitehouse, I., A. Flaus, B. R. Cairns, M. F. White, J. L. Workman and O. H. Tom. 1999. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature. 400, 784-787 https://doi.org/10.1038/23506
  38. Workman, J. L. and R. E. Kingston. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545-579 https://doi.org/10.1146/annurev.biochem.67.1.545