DOI QR코드

DOI QR Code

The Effect of refrigerant pass & distribution in aluminum parallel flow heat exchanger

알루미늄 평행류 열교환기에서 냉매패스와 분배량 변화의 영향

  • Kim, Jeong-Sik (Division of Technical Innovation, Songdo Technopark) ;
  • Kim, Nae-Hyun (Department of Mechnical Engineering, University of Incheon) ;
  • Kim, Kwang-Hee (Division of Technical Innovation, Songdo Technopark)
  • 김정식 ((재)송도테크노파크 기술혁신본부) ;
  • 김내현 (인천대학교 기계공학과) ;
  • 김광희 ((재)송도테크노파크 기술혁신본부)
  • Published : 2009.12.31

Abstract

In this study, an analysis code was created for a 190*650*25-mm (W*H*D) parallel-flow evaporator, and research was done on how to increase the heat transfer rate of aluminum PF heat exchanger for application in IDU. After varying the R410A refrigerant up-down flow to two and three passes and the distribution ratio to 1:1:1 and 1:2:2, it was determined that the two-pass flow has a 30% higher partial heat transfer rate and a 25% lower heat transfer coefficient compared to the three-pass flow. As for the distribution ratios of the three-pass flow, 1:1:1 was found to have a lower refrigerant pressure loss than 1:2:2 distribution. It was assumed, though, that the refrigerant distribution had a uniform flow and that its value was thus overestimated in the actual case of maldistribution in each pass.

본 연구에서는 천정 설치형 공조기 적용을 위해 연구가 활발히 진행되고 있는 알루미늄 평행류 증발기 해석 프로그램을 개발하여 190mm*650mm*25mm(W*H*D) 크기의 열교환기를 해석하였다. R410A냉매의 분배비가 일정하고 상하로 유동하는 2, 3 패스의 경우와 3 패스이고 분배비율(1:1:1, 1:2:2)을 달리할 때, 열교환 성능을 예측하였다. 계산 결과, 2 패스가 3 패스보다 국소 전열량이 30% 정도 높았지만, 건도에 따른 열전달계수는 25% 낮았으며, 3 패스의 경우, 분배비 1:1:1 보다 1:2:2가 냉매 압력손실이 높게 나타났다. 본 해석에서는 패스당 냉매가 균일하게 분포하는 것으로 가정하였으므로, 패스별로 불균일하게 유동되는 실제의 경우보다 열교환성능을 과대 예측하는 것으로 판단된다.

Keywords

References

  1. 권영철, 박윤창, "PF열교환기를 적용한 공조기의 성능비교 실험연구", 한국산학기술학회논문집, Vol. 10, No. 3, pp.470-475, 2009.
  2. 함정호, 김도형, 김내현, 김정오, 김정식, "유입방향에 따른 헤더내 물-공기 2상류 분지특성", 대한설비공학회 하계학술대회 논문집, pp.291-295, 2007.
  3. Park, Y. G. and Jacobi, A. M. "Air-side performance of flat-tube louver-fin heat exchangers under wet conditions: wet-surface multipliers for Colburn j and f factors", International Refrigeration and Air Conditioning Conference at Purdue, R032, 2006.
  4. Kim, M. H. and Bullard, C. W. "Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions", Int. J. Refrigeration, Vol. 25, No. 7, pp. 924-934, 2002. https://doi.org/10.1016/S0140-7007(01)00106-2
  5. Zhang, M. and Webb, R. L. "A correlation of two-phase friction for refrigerants in small-diameter tubes", Exp. Thermal Fluid Sci., Vol. 25, pp. 131-139, 2001. https://doi.org/10.1016/S0894-1777(01)00066-8
  6. Kim, M.-H., Youn, B. and Bullard, C. W. "Effect of inclination on the airside performance of a brazed aluminum heat exchanger under dry and wet conditions", Int. J. Heat Mass Transfer, Vol. 44 pp. 4613-4623, 2001. https://doi.org/10.1016/S0017-9310(01)00104-1
  7. Kays, W. M. and London, A. L. "Compact Heat Exchangers", McGraw-Hill Books, 1984.