복합 자질 정보를 이용한 통계적 한국어 채팅 문장 생성

Statistical Generation of Korean Chatting Sentences Using Multiple Feature Information

  • 김종환 (강원대학교 컴퓨터정보통신공학과) ;
  • 장두성 (KT 중앙 연구소) ;
  • 김학수 (강원대학교 컴퓨터정보통신공학과)
  • 투고 : 2009.09.13
  • 심사 : 2009.12.17
  • 발행 : 2009.12.31

초록

채팅 시스템은 인간이 사용하는 언어를 이용하여 인간과 컴퓨터 간의 대화를 시뮬레이션하는 프로그램이다. 본 논문에서는 핵심어와 화행을 입력으로 받아 자연스러운 채팅 문장을 생성하는 통계 모델을 제안한다. 제안 모델은 먼저 핵심어를 포함한 어절을 말뭉치에서 선택하고, 해당 어절의 주위에 있는 어절의 출현 정보와 구문 정보를 이용하여 후보 문장들을 생성한다. 그리고 화행에 기초한 언어 모델, 어절간 공기 정보, 각 어절의 구문 정보를 이용하여 생성된 후보 문장 중 하나를 선택한다. 실험 결과에 따르면 제안 모델은 단순한 언어 모델에 기반한 기존의 모델보다 좋은 86.2%의 적합 문장 생성률을 보였다.

A chatting system is a computer program that simulates conversations between a human and a computer using natural language. In this paper, we propose a statistical model to generate natural chatting sentences when keywords and speech acts are input. The proposed model first finds Eojeols (Korean spacing units) including input keywords from a corpus, and generate sentence candidates by using appearance information and syntactic information of Eojeols surrounding the found Eojeols. Then, the proposed model selects one among the sentence candidates by using a language model based on speech act information, co-occurrence information between Eojeols, and syntactic information of each Eojeol. In the experiment, the proposed model showed the better correct sentence generation rate of 86.2% than a previous conventional model based on a simple language model.

키워드