DOI QR코드

DOI QR Code

In-Situ Pulse Laser Annealing 증착에 의한 광학박막의 표면 개선 효과

Effect of Surface Improvement on Thin Film by In-Situ Laser Annealing Deposition

  • 이세호 (청주대학교 레이저 광정보공학과) ;
  • 유연석 (청주대학교 레이저 광정보공학과)
  • Lee, Se-Ho (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Yu, Yeon-Serk (Department of Laser and Optical Information Engineering, Cheongju University)
  • 발행 : 2009.02.25

초록

$MgF_2$, $SiO_2$ 및 ZnS 박막을 물리 증기 증착하는 동안 펄스 레이저(Nd-YAG, 제2고조파 532 nm)로 Annealing 하여 표면 거칠기 특성을 개선하였다. 펄스 반복율이 10 Hz, 펄스폭 5 ns, 파장 532 nm인 펄스레이저로 Annealing한 유리 기판에 증착된 $MgF_2$$SiO_2$ 시료들은 레이저 에너지가 $140\;mJ/cm^2$ 경우에 산란 총량 값이 최소가 되었지만, ZnS 박막의 경우에는 Annealing 레이저광 에너지가 $62\;mJ/cm^2$일 때 산란 총량이 최소값을 나타냈다. AFM을 사용하여 박막시료의 표면 거칠기에 대한 펄스 레이저 Annealing 효과를 측정 하였다. 그 결과는 TIS 측정치와 유사 하여 표면 거칠기는 Annealing 하기위해 조사된 레이저 에너지에 의존 하여 감소하였다.

In-situ pulse laser (Nd-YAG, 2nd harmonics 532 nm) annealing used in physical vapor deposition of $MgF_2$, $SiO_2$ and ZnS thin films was shown to be effective in improving their surface roughness properties. Total integrated scattering (TIS) measurements of $MgF_2$ and $SiO_2$ samples deposited on glass substrates revealed that the laser irradiation of films at an energy of approximately $140\;mJ/cm^2$ at 532 nm with a repetition frequency of 10 Hz and pulse duration of 5 ns during the deposition resulted in total scatterings that were minimum. But in case of the ZnS samples, measurements revealed minimum total scattering at a laser energy of approximately $62\;mJ/cm^2$. Atomic Force Microscopy (AFM) has been used to evaluate the effect of pulse laser annealing on the surface roughness for thin film samples. The results were similar to the TIS measurements, indicating that surface roughness was decreased when the irradiated annealing pulse laser energy increased. But it also increased when the irradiated annealing pulse laser energy was over some limit that depended on the materials.

키워드

참고문헌

  1. H. S. Nalwa, Handbook of Thin Film Materials: Deposition And Processing of Thin Films, (Academic, 2002), Chap. 1, pp. 81-92
  2. H. Angus Macleod, Thin-Film Optical Filters, 3rd ed. (Academic, 2001), Chap. 10, pp. 482-485
  3. 황보창권 “이온 보조 증착에 의한 광학박막의 제작과 특성,” 한국광학회지 한국광학회 광학 및 양자전자학 워크샵 논문집 제6회, 8권, pp. 84-93, 1989
  4. Philip J. Martin, Wayne G. Sainty, Roger P. Netterfield, David R. McKenzie, David J. H. Cockayne, Soey H. Sie, Obert R. Wood, and Harold G. Craighead, “Influence of ion assistance on the optical properties of $MgF_2$,” Appl. Opt., vol. 26, no. 7, pp. 1235-1239, 1987 https://doi.org/10.1364/AO.26.001235
  5. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt., vol. 22, no. 1, pp. 178-184, 1983 https://doi.org/10.1364/AO.22.000178
  6. 유연석, 이성훈, “$Al_2O_3$ 박막의 후처리 효과가 Laser-Induced Damage Threshold에 미치는 영향,” 한국광학회지, vol. 8, no 5, pp. 387-394, 1997
  7. L. Fornarini, J. C. Conde, C. Alvani, D. Olevano, and S. Chiussi, “Experimental determ-ination of $La_2O_3$ thermal conductivity and its application to the thermal analysis of a-Ge/$La_2O_3$/c-Si laser annealing,” Thin Solid Films, vol. 516, pp. 7400-7405, 2008 https://doi.org/10.1016/j.tsf.2008.02.032
  8. L. Gallais, J. Capoulade, F. Wagner, and J. Natoli M. commandre, “Analysis of material modifications induced during laser damage in $SiO_2$ thin films,” Opt. Comm., vol. 272, pp. 221-226, 2007 https://doi.org/10.1016/j.optcom.2006.11.025
  9. Y. Zhao, J. Shao, H. He, and Z. Fan, “Laser conditioning of high-reflective and anti-refl-ective coatings at 1064 nm,” Proc. SPIE., vol. 5991, 2005 https://doi.org/10.1117/12.634130
  10. Douglas B. Chrisey, Graham K. Hubler, Pulsed Laser Deposition of Thin Films, (John Wiley & Sons Inc., 1994), Chap. 10. pp. 281-285
  11. Milton Ohring, The Materials Science of Thin Films, (Academic, 1992). Chap. 3
  12. J. C. Stover, Optical scattering: Measurement and Analysis, (SPIE, Optical Engineering Press, 1995), Chap. 4
  13. A. Duparre and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt., vol. 32, no. 28, pp. 5475-5480, 1993 https://doi.org/10.1364/AO.32.005475