DOI QR코드

DOI QR Code

Electro-chemical Preparation of TiO2/CNT Electrodes with TNB Electrolyte and Their Photoelectrocatalytic Effect

  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University,School of Materials and Chemical Engineering, Anhui University of Architecture) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 발행 : 2009.11.30

초록

We investigate a method for the electrochemical preparation of titanium dioxide/carbon nanotube ($TiO_2$/CNT) composites involving the electroplating of Ti in a titanium n-butoxide (TNB) electrolyte into a CNT matrix. The Brunauer-Emmett-Teller (BET) surface areas of $TiO_2$/CNT composites decrease as the electrochemical operating time increases. Changes in XRD patterns show a typical anatase type on the $TiO_2$/CNT composite prepared with a CNT matrix by the electroplating method in a TNB solution. In SEM micrographs, the titanium complex particles are uniformly distributed on the CNT surface. The results of chemical elemental analysis for the $TiO_2$/CNT composites show that most of the spectra for these samples produce stronger peaks for carbon and Ti metal than for any other element. Finally, the prominent photoelectrocatalytic activities of the $TiO_2$/CNT composites can be attributed to the combined effects of photodegradation of $TiO_2$, electron assistance of CNT, and the application of a sufficient voltage.

키워드

참고문헌

  1. G. M. An, W. H. Ma, Z. Y. Sun, Z. M. Liu, B. X. Han, S. D. Miao, Z. J. Miao, and K. L. Ding, “Preparation of Titania/carbon Nanotube Composites Using Supercritical Ethanol and Their Photocatalytic Activity for Phenol Degradation Under Visible Light Irradiation,” Carbon, 45 1795-801 (2007) https://doi.org/10.1016/j.carbon.2007.04.034
  2. A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238 37-8 (1972) https://doi.org/10.1038/238037a0
  3. A. Fujishima, T. N. Rao, and D. A. Tryk, “$TiO_2$ Photocatalysts and Diamond Electrodes,” Electrochim. Acta, 45 4683-90 (2000) https://doi.org/10.1016/S0013-4686(00)00620-4
  4. D. Robert, S. Parra, C. Pulgarin, A. Krzton, and J. V. Weber, “Chemisorption of Phenols and Acids on $TiO_2$ Surface,” Appl. Surf. Sci., 167 51-8 (2000) https://doi.org/10.1016/S0169-4332(00)00496-7
  5. I. K. Konstantinou and T. A. Albanis, “$TiO_2$-assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations,” Appl. Catal. B: Environ., 49 1-14 (2004) https://doi.org/10.1016/j.apcatb.2003.11.010
  6. M. Muruganandham, N. Shobana, and M. Swaminathan, “Optimization of Solar Photocatalytic Degradation Conditions of Reactive Yellow 14 Azo Dye in Aqueous $TiO_2$,” J. Mol. Catal. A : Chem., 246 154-61 (2006) https://doi.org/10.1016/j.molcata.2005.09.052
  7. M. H. Habibi, A. Hassanzadeh, and S. Mahdavi, “The Effect of Operational Parameters on the Photocatalytic Degradation of Three Textile Azo Dyes in Aqueous $TiO_2$ Suspensions,” J. Photochem. Photobiol. A: Chem., 172 89-96 (2005) https://doi.org/10.1016/j.jphotochem.2004.11.009
  8. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon Nanotubes-the Route Toward Applications,” Science, 297 787-92 (2002) https://doi.org/10.1126/science.1060928
  9. P. M. Ajayan, “Nanotubes from Carbon,” Chem. Rev., 99 1787-99 (1999) https://doi.org/10.1021/cr970102g
  10. J. T. Hu, T. W. Odom and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res., 32 435-45 (1999) https://doi.org/10.1021/ar9700365
  11. L. Fu, Z. M. Liu, Y. Q. Liu, B. X. Han, J. Q. Wang, and P. G. Hu, “Beaded Cobalt Oxide Nanoparticles Along Carbon Nanotubes: Towards More Highly Integrated Electronic Devices,” Adv. Mater., 17 217-21 (2005) https://doi.org/10.1002/adma.200400833
  12. L. Fu, Y. Q. Liu, Z. M. Liu, B. X. Han, L. C. Cao, and D. C. Wei, “Carbon Nanotubes Coated with Alumina as Gate Dielectrics of Field-effect Transistors,” Adv. Mater., 18 181-85 (2006) https://doi.org/10.1002/adma.200501324
  13. Y. H. Lin, X. L. Cui, C. H. Yen, and C. M. Wai, “PtRu/carbon Nanotube Composite Synthesized in Supercritical Fluid: a Novel Electrocatalyst for Direct Methanol Fuel Cell,” Langmuir, 21 11474-79 (2005) https://doi.org/10.1021/la051272o
  14. Y. Y. Ou and M. H. Huang, “High-density Assembly of Gold Nanoparticles on Multiwalled Carbon Nanotubes Using 1-Pyrenemethylamine as Interlinker,” J. Phys. Chem., 110 2031-36 (2006) https://doi.org/10.1021/jp055920o
  15. J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, and W. Blau, “Percolation-dominated Conductivity in a Conjugated-polymer.carbon-nanotube Composite,” Phys. Rev. B, 58 7492-95 (1998) https://doi.org/10.1103/PhysRevB.58.R7492
  16. A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, and E. W. Wong, “Preparation and Properties of Polymerwrapped Single-walled Carbon Nanotubes,” Angew. Chem. Int. Ed., 40 1721-25 (2001) https://doi.org/10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F
  17. H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, and J. H. Lee, “Organic Light Emitting Diodes Fabricated with Single Wall Carbon Nanotubes Dispersed in a Hole Conducting Buffer: The Role of Carbon Nanotubes in a Hole Conducting Polymer,” Synth. Met., 116 369-72 (2001) https://doi.org/10.1016/S0379-6779(00)00439-2
  18. A. Kongkanand and P. V. Kamat, “Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor.SWCNT Suspensions,” ACS. Nano., 1 13-21 (2007) https://doi.org/10.1021/nn700036f
  19. K. Woan, G. Pyrgiotakis, and W. Sigmund, “Photocatalytic Carbon-nanotube-$TiO_2$ Composites,” Adv. Mater., 21 1-7 (2009)
  20. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, and S. Bonnamy, “Synthesis and Characterization of Carbon Nanotubes-$TiO_2$ Nanocomposites,” Carbon, 42 1147-51 (2004) https://doi.org/10.1016/j.carbon.2003.12.041
  21. W. D. Wang, P. Serp, P. Kalck, and J. L. Faria, “Photocatalytic Degradation of Phenol on MWNT and Titania Composite Catalysts Prepared by a Modified Sol.gel Method,” Appl. Catal. B. Environ., 56 305-12 (2005) https://doi.org/10.1016/j.apcatb.2004.09.018
  22. C. S. Kuo, Y. H. Tseng, H. Y. Lin, C. H. Huang, C. Y. Shen, Y. Y. Li, S. I. Sha, and C. P. Huang, “Synthesis of a CNTgrafted $TiO_2$ Nanocatalyst and Its Activity Triggered by a DC voltage,” Nanotechnology, 18 465607-12 (2007) https://doi.org/10.1088/0957-4484/18/46/465607
  23. X. H. Xia, Z. H. Jia, Y. Yu, Y. Liang, Z. Wang, and L. L. Ma, “Preparation of Multi-walled Carbon Nanotube Supported $TiO_2$ and Its Photocatalytic Activity in the Reduction of $CO_2$ with $H_2O$,” Carbon, 45 717-21 (2007) https://doi.org/10.1016/j.carbon.2006.11.028
  24. W. D. Wang, P. Serp, P. Kalck, and J. L. Faria, “Visible Light Photodegradation of Phenol on MWCNT.$TiO_2$ Composite Catalysts Prepared by a Modified Sol.gel Method,” J. Mol. Catal. A: Chem., 235 194-99 (2005) https://doi.org/10.1016/j.molcata.2005.02.027
  25. K. Byrappa, A. S. Dayananda, C. P. Sajan, B. Basavalingu, M. B. Shayan, K. Soga, and M. Yoshimura, “Hydrothermal Preparation of ZnO:CNT and $TiO_2$:CNT Composites and Their Photocatalytic Applications,” J. Mater. Sci., 43 2348-55 (2008) https://doi.org/10.1007/s10853-007-1989-8
  26. S. Kedem, J. Schmidt, Y. Paz, and Y. Cohen, “Composite Polymer Nanofibers with Carbon Nanotubes and Titanium Dioxide Particles,” Langmuir, 21 5600-4 (2005) https://doi.org/10.1021/la0502443
  27. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, and M. Toyoda, “Carbon Coating of Anatase-type $TiO_2$ Through Their Precipitation in PVA Aqueous Solution,” Carbon, 41 2619-24 (2003) https://doi.org/10.1016/S0008-6223(03)00340-3
  28. W. C. Oh and M. L. Chen, “Electro-chemical Preparation of $TiO_2$/ACF Composites with TNB Electrolyte and Their Photocatalytic Effect,” J. Ceram. Process. Res., 9 100-6 (2008)
  29. P. A. Christensen, T. P. Curtis, T. A. Egerton, S. A. M. Kosa, and J. R. Tinlin, “Photoelectrocatalytic and Photocatalytic Disinfection of E. coli Suspensions by Titanium Dioxide,” Appl. Catal. B: Environ., 41 371-86 (2003) https://doi.org/10.1016/S0926-3373(02)00172-8
  30. X. Z. Li, F. B. Li, C. M. Fan, and Y. P. Sun, “PhotoelectrocataLytic Degradation of Humic Acid in Aqueous Solution Using a Ti/$TiO_2$ Mesh Photoelectrode,” Water Res., 36 2215-24 (2002) https://doi.org/10.1016/S0043-1354(01)00440-7
  31. D. Jiang, H. Zhao, S. Zhang, and R. John, “Kinetic Study of Photocatalytic Oxidation of Adsorbed Carboxylic Acids at $TiO_2$ Porous Films by Photoelectrolysis,” J. Catal., 223 212-20 (2004) https://doi.org/10.1016/j.jcat.2004.01.030
  32. W. C. Oh, A. R. Jung, and W. B. Ko, “Preparation of Fullerene/$TiO_2$ Composite and Its Photocatalytic Effect,” J. Ind. Engin. Chem., 13 1208-14 (2007)
  33. W. C. Oh and M. L. Chen, “Synthesis and Characterization of CNT/$TiO_2$ Composites Thermally Derived from MWCNT and Titanium(IV) n-butoxide,” Bull. Korean Chem. Soc., 29 159-64 (2008) https://doi.org/10.5012/bkcs.2008.29.1.159
  34. M. J. O'connell(Ed), “Carbon Nanotubes Properties and Applications,” pp. 119-51, CRC press, Boca Raton, USA, 2006

피인용 문헌

  1. Composites and Their Photocatalytic Activity Under Visible Light vol.48, pp.3, 2011, https://doi.org/10.4191/KCERS.2011.48.3.211