DOI QR코드

DOI QR Code

Formation of Sn-dispersed Si Nanoparticles by Co-grinding

  • Kim, Bong-Chull (Sasmung SDI Co. Ltd.) ;
  • Uono, Hiroyuki (Mitsubishi Chemical Corporation MCC-Group Science &Technology Research Center) ;
  • Ue, Makoto (Mitsubishi Chemical Corporation MCC-Group Science &Technology Research Center) ;
  • Senna, Mamoru (Department of Applied Chemistry, Faculty of Science and Technology, Keio University)
  • 발행 : 2009.11.30

초록

An immiscible Si/Sn (=7/3 by volume) powder mixture was subjected to simple grinding and subsequent leaching process to give Sn nanopowder reinforced or dispersed in Si powder. Crystallite and their agglomerates of Si were ca. 15 nm and 100 nm, respectively. Sn remained at 4.5 vol% in Si powder after aqueous HCl leaching, dispersively occluded in Si matrix as confirmed by ICP analysis and cross sectional TEM observation.

키워드

참고문헌

  1. C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nature Nanotechnology, 3 31-5 (2008) https://doi.org/10.1038/nnano.2007.411
  2. C. K. Chen, X. F. Zhang, and Y. Cui, “High Capacity Li Ion Battery Anodes Using Ge Nanowires,” Nano Letter, 8 [1] 307-9 (2008) https://doi.org/10.1021/nl0727157
  3. B. C. Kim, H, Uono, T. Satou, T. Fuse, T. Ishihara, M. Ue, and M. Senna, “Cyclic Properties of Si-Cu/Carbon Nanocomposite Anodes for Li-ion Secondary Batteries,” J. Electrochem. Soc., 150 [3] A523-26 (2005)
  4. B. C. Kim, H. Uono, T. Satou, T. Fuse, T. Ishihara, and M. Senna, “Li-ion Battery Anode Properties of Si-carbon Nanocomposites Fabricated by High Energy Multiring-type Mill,” Solid State Ionics,172 33-7 (2004) https://doi.org/10.1016/j.ssi.2004.02.028
  5. W. T. Leach, J. Zhu, and J. G. Ekerdt, “Cracking Assisted Nucleation in Chemical Vapor Deposition of Silicon Nanoparticles on Silicon Dioxide,” J. Crystal Growth, 240 415-22 (2001) https://doi.org/10.1016/S0022-0248(02)01076-X
  6. K. Watanabe, K. Sawada, M. Koshiba, M. Fujii, and S. Hayashi, “Photoluminescence Decay-dynamics of Si Nanoparticles Prepared by Pulsed Laser Ablation,” Applied Surface Science, 8082 1-4 (2002) https://doi.org/10.1016/S0169-4332(02)00431-2
  7. F. Papadimitrakopoulos, P. Wisniecki, and D. E. Bhagwagar, “Mechanically Attrited Silicon for High Refractive Index Nanocomposites,” Chem. Mater., 9 2928-33 (1997) https://doi.org/10.1021/cm970278z
  8. L. T. Canham, “Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers,” Appl. Phys. Lett., 57 1046-48 (1990) https://doi.org/10.1063/1.103561
  9. C. Lam, Y. F. Zhang, Y. H. Tang, C. S. Lee, I. Bello, and S. T. Lee, “Large-Scale Synthesis of Ultrafine Si Nanoparticles by Ball Milling,” J. Crystal Growth, 220 466-70 (2000) https://doi.org/10.1016/S0022-0248(00)00882-4
  10. K. Tkacova, Mechanical Activation of Minerals,” pp. 80-83, Elsevier Science Publishing Co., Inc. NY, 1989
  11. B. C. Kim, H. Uono, T. Fuse, T. Ishihara, and M. Senna, “Fabrication of Nano-sized Si Powders with a Narrow Size Distribution by Two-step Milling,” J. Mat. Res., 6 1368-73 (2003) https://doi.org/10.1557/JMR.2003.0188
  12. K. Hamada, S. Yamamoto, M. Nagao, and M. Senna, “Measurement of Compressive and Shear Forces in Multi-Ring Media Mill,” J. Chem. Eng. of Jpn., 30 756-59 (1997) https://doi.org/10.1252/jcej.30.756
  13. C. Suryanarayana, “Mechanical Alloying and Milling,” Progress in Materials Science, 46 1-184 (2001) https://doi.org/10.1016/S0079-6425(99)00010-9