DOI QR코드

DOI QR Code

Physiological Properties of Jeju Traditional Doenjang

제주 재래식된장의 생리적 특성

  • Hwang, Joon-Ho (Biotechnology Regional Innovation Center) ;
  • Oh, You-Sung (Biotechnology Regional Innovation Centeregional Innova) ;
  • Lim, Ja-Hun (Biotechnology Regional Innovation Center) ;
  • Park, Ji-Eun (Biotechnology Regional Innovation Center) ;
  • Kim, Mi-Bo (Dept. of Biology, Jeju National University) ;
  • Yoon, Hoon-Seok (Subtropical Horticulture Research Institute) ;
  • Lim, Sang-Bin (Biotechnology Regional Innovation Center, Dept. of Food Bioengineering,Jeju National University)
  • 황준호 (제주대학교 생명과학기술혁신센터) ;
  • 오유성 (제주대학교 생명과학기술혁신센터) ;
  • 임자훈 (제주대학교 생명과학기술혁신센터) ;
  • 박지은 (제주대학교 생명과학기술혁신센터) ;
  • 김미보 (제주대학교 식품생명공학과) ;
  • 윤훈석 (제주대학교 아열대원예산업연구소) ;
  • 임상빈 (제주대학교 생명과학기술혁신센터,제주대학교 식품생명공학과)
  • Published : 2009.12.31

Abstract

The antioxidant activities of water extracts from wild vegetables such as Ligularia fischeri (GC), Capsicum annuum L. (GCY), Aster scaber (CNM), Petasites japonicus S. et Z. Max (MYD), Ipomoea batatas L. (Lam) (GGM) were evaluated and compared with water extracts from freeze dried block. The antioxidant properties of water extracts from wild vegetables and their freeze dried block were evaluated using different antioxidant tests; 2.2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging, hydroxyl radical scavenging and nitrite scavenging activities. The water extracts from wild vegetables were found to have a higher total phenolic content than water extracts from freeze dried block. Total phenolic contents of water extracts from GC, GCY, CNM, MYD, and GGM were $471.66{\pm}3.52\;{\mu}g/mg,\;141.33{\pm}2.51\;{\mu}g/mg,\;177.33{\pm}2.88\;{\mu}g/mg,\;238.66{\pm}9.50\;{\mu}g/mg\;and\;122.67{\pm}3.51\;{\mu}g/mg$, respectively. At the concentrations of 1000 ppm, water extracts from GC, GCY, CNM, and GGM showed higher activities than water extracts from their freeze dried block on DPPH radical scavenger activity. The activity of water extracts from CNM, GC, GCY, MYD, and GGM were 90.9%, 89.9%, 76.6%, 71.1%, and 57.4%, respectively. When 10000 ppm of GC, GCY, CNM, MYD, and GGM water extracts tested for hydroxyl radical scavenging activity, activities were increased by 38.8%, 33.4%, 35.9%, 34.3%, and 33.8%, respectively and a similar effect was found with water extracts from GCY, CNM, and GGM freeze dried block at 10000 ppm concentration. However, the water extracts from GC and MYD was slightly more effective than freeze dried block extracts. The water extracts from wild vegetables and their freeze dried block had effective DPPH radical scavenger activity and hydroxyl radical scavenging activity at all tested concentrations. Nitrite scavenging activity of GC water extract significantly increased in a dose-dependent manner and the extract had higher nitrite scavenging activity than extracts freeze dried block extracts. We found that freeze dried block maintained antioxidant activities of the wild vegetables.

곰취(Ligularia fischeri, GC), 고추잎(Capsicum annuum L., GCY), 취나물(Aster scaber, CNM), 머위대(Petasites japonicus S. et Z. Max, MYD) 및 고구마순(Ipomoea batatas L. (Lam), GGM)과 같은 산채들의 물 추출물의 항산화능력을 평가하고 이들 동결건조 블록 물 추출물들의 항산화력과 비교하였다. 산채 물 추출물들과 그들의 동결건조 블록물 추출물들의 항산화력 측정은 2,2-diphenyl-1-picrylhydrazyl(DPPH) radical 소거작용, hydroxyl radical 소거작용 및 아질산염 소거작용과 같은 방법에 의해 알아보았다. 산채 물 추출물은 그들의 동결건조 물 추출물보다 총 페놀함량이 더 높았다. GC, GCY, CNM, MYD 그리고 GGM 물추출물들의 총 페놀 함량은 각각 $471.66{\pm}3.52\;{\mu}g/mg,\;141.33{\pm}2.51\;{\mu}g/mg,\;177.33{\pm}2.88\;{\mu}g/mg,\;238.66{\pm}9.50\;\mu}g/mg\;그리고\;122.67{\pm}3.51\;{\mu}g/mg$이었다. 1000 ppm GC, GCY, CNM 그리고 GGM 물 추출물의 DPPH radical 소거작용은 그들의 동결건조 블록 물 추출물보다 더 높았고, 1000 ppm CNM, GC, GCY, MYD 그리고 GGM의 물 추출물의 DPPH radical 소거작용은 각각 90.9%, 89.9%, 76.6%, 71.1% 그리고 57.4%였다. 10000 ppm GC, GCY, CNM, MYD 그리고 GGM 물 추출물들은 hydroxyl radical 소거작용을 각각 38.8%, 33.4%, 35.9%, 34.3% 그리고 33.8%까지 증가시켰고, GCY, CNM 그리고 GGM의 물 추출물은 동결건조 블록 물 추출물과 유사한 활성을 나타내었으나 GC와 MYD의 물 추출물이이들 동결건조 블록들의 물 추출물의 hydroxyl radical 소거작용보다 약간 더 영향력이 있었다. 산채 물 추출물들과 이들 동결건조 블록 물 추출물들은 실험된 모든 농도에서 DPPH radical 소거작용 및 hydroxyl radical 소거작용을 나타내었다. GC 물 추출물의 아질산염 소거작용은 현저하게 농도 의존적으로 증가하였고, GC 물 추출물의 아질산염 소거작용이 그것의 동결건조 블록 물 추출물의 아질산염 소거작용보다 높았다. 이상의 결과들로부터 동결건조블록이 산채와 비교하여 산채가 가지고 있는 항산화력을 유지하고 있다는 것을 알수 있었다.

Keywords

References

  1. Deby C. 1988. Metabolism of polyunsaturated fatty acids, precursors of eicosanoids. In Prostaglandins: Biology and chemistry of prostaglandins and related eicosanoids. Curtis-Prior PB, ed. Churchill Livingstone, Edinburgh, UK. p 11-36
  2. Palmer RM, Ashton DS, Moncada S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664-666 https://doi.org/10.1038/333664a0
  3. Monacada S, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109-142
  4. Chang TS, Ding HY, Tai SSK, Wu CY. 2007. Metabolism of the soy isoflavones daidzein and genistein fungi used in the preparation of various fermented soybean foods. Biosci Biotechnol Biochem 71: 1330-1333 https://doi.org/10.1271/bbb.60573
  5. Choi SB, Park SM. 1999. The effect of $\varepsilon$-6 polyunsaturated fat and vitamin E intakes on insulin resistance in 90% pancreatomized rats. Korean J Med 55: 489-499
  6. Kim MH, Im SS, Kim SH, Kim GE, Lee JH. 1994. Antioxidative materials in domestic Meju and Doenjang 2. separation of lipophilic brown pigment and their antioxidative activity. J Korean Soc Food Nutr 23: 251-260
  7. Yang MS, Nam SH. 1995. Isolation of cytotoxic substances from Chysanthemum boreale M. Agric Chem Biotechnol 38: 273-277
  8. Korea National Statistical Office. 2008. The cause of death statistics 2007. Annual Report on the Cause of Death Statistics. p 21
  9. Kim HB, Lee HS, Kim SJ, Yoo HJ, Hwang JS, Chen G, Youn HJ. 2007. Ethanol extract of fermented soybean, Chungkookjang, inhibits the apoptosis of mouse spleen, and thymus cells. J Microbiol 35: 256-261
  10. Kuba M, Tanaka K, Tawata S, Takeda Y, Yasuda M. 2003. Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci Biotechnol Biochem 67: 1278-1283 https://doi.org/10.1271/bbb.67.1278
  11. Zhang Q, Zhang J, Shen J, Silva A, Dennis AD, Barrow CJ. 2006. Barrow A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol 18: 445-450 https://doi.org/10.1007/s10811-006-9048-4
  12. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200 https://doi.org/10.1038/1811199a0
  13. Liu F, Ooi VEC, Chang ST. 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60: 763-771 https://doi.org/10.1016/S0024-3205(97)00004-0
  14. Lee JH, Min DB. 2006. Nutraceuticals, aging, and food oxidation. Handbook of Functional Lipids. Taylor & Francis Group, LLC, CRC Press, USA. p 325-350
  15. Oh HJ, Kim CS. 2007. Antioxidant and nitrite scavenging ability of fermented soybean foods (Chungkukjang, Doenjang). J Korean Soc Food Sci Nutr 36: 1503-1510 https://doi.org/10.3746/jkfn.2007.36.12.1503
  16. Oh HJ, Lim JH, Lee JY, Jeon BS, Kang HY, Oh YS, Oh YJ, Lim SB. 2009. Quality characteristics of jeju traditional Doenjang. Kor J Culinary Res 15: 298-308
  17. Madamanchi NR, Hakim ZS, Runge MS. 2004. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. Thrombo Haemost 3: 254-267 https://doi.org/10.1111/j.1538-7836.2004.01085.x
  18. Park JS, Park HY, Kim DH, Kim DH, Kim HK. 2008. Ortho-dihydroxyisoflavone derivatives from aged Doenjang (Korean fermented soypaste) and its radical scavenging activity. Bioorg Med Chem Lett 18: 5006-5009 https://doi.org/10.1016/j.bmcl.2008.08.016
  19. Jang CH, Park CS, Lim JK, Kim JH, Kwon DY, Kim YS, Shin DH, Kim JS. 2008. Metabolism of isoflavone derivatives during manufacturing of traditional Meju and Doenjang. Food Sci Biotechnol 17: 442-445
  20. Afaq F, Ukhtar H. 2006. Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp Dermato 15: 678-684 https://doi.org/10.1111/j.1600-0625.2006.00466.x
  21. Mazire C, Dantin F, Dubois F, Santus R, Mazire J. 2001. Biphasic effect of UVA radiation on STAT1 activity and tyrosine phosphorylation in cultured human keratinocyte. Free Radic Biol Med 28: 1430-1437 https://doi.org/10.1016/S0891-5849(00)00264-1
  22. Pyo YH, Lee TC. 2007. The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. J Food Sci 72: 218-223 https://doi.org/10.1111/j.1750-3841.2007.00312.x
  23. Kim SB, Lee TG, Park YB, Yeum DM, Kim OK, Do JR, Park YH. 1994. Isolation and characteristics of angiotensin-Ⅰ converting enzyme inhibitory activity of peptic hydrolyzates of anchovy muscle protein. Bull Korean Fish Soc 27: 1-6
  24. Kim DS, Kwon HJ, Jang HD, Kwon YI. 2009. In vitro $\alpha$- glucosidase inhibitory potential and antioxidant activity of selected Imiaceae species inhabited in Korean penninsula. Food Sci Biotechnol 18: 239-244
  25. Lee DS, Lee SH. 2001. Genisten, a soy isoflavone, is a potent $\alpha$-glucosidase inhibitor. FEBS 501: 84-86 https://doi.org/10.1016/S0014-5793(01)02631-X
  26. Salvemini D, Manning PT, Zweifel BS. 1995. Dual inhibition of nitric oxide and prostaglandin production contributes to the anti inflammatory properties of nitric oxide synthetase inhibitors. J Clin Invest 96: 301-308 https://doi.org/10.1172/JCI118035
  27. Park KY. 1997. Destruction of alfatoxins during the manufacture of Doenjang by traditional method and cancer preventive effects of Doenjang. J Korean Assoc Cancer Prev 2: 27-37
  28. Lim SY, Rhee SH, Park KY. 2004. Inhibitory effect of methanol extract of Doenjang on growth and DNA synthesis of human cancer cells. J Korean Soc Food Sci Nutr 33: 936-940 https://doi.org/10.3746/jkfn.2004.33.6.936
  29. Kurechi T, Kikugawa K, Fukuda S, Hasunuma M. 1981. Inhibition of N-nitrosamine formation by soya products. Food Cosmet Toxicol 19: 425-428 https://doi.org/10.1016/0015-6264(81)90445-4
  30. Hwang KM, Lee JM, Park KY. 2005. Doenjang extracts has anticancer activity and induces apoptosis in AGS human gastric adenocarcinoma. J Food Sci Nutr 10: 167-171 https://doi.org/10.3746/jfn.2005.10.2.167

Cited by

  1. Physiological Activities of Korean Traditional Soybean-Fermented Royal Court Soy Sauces, Gungjungjang vol.41, pp.2, 2012, https://doi.org/10.3746/jkfn.2012.41.2.149
  2. Quality characteristics of tangerine peel Soksungjang prepared from different koji strains vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.117
  3. Physicochemical Characteristics and Antioxidative Effects of Barley Soybean Paste (Doenjang) Containing Kelp Extracts vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1843
  4. Analysis of Free Sugar, Organic Acid and Free Amino Acid in Commercial Makjang vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.326
  5. Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety vol.59, 2016, https://doi.org/10.1016/j.foodcont.2015.07.003
  6. 여주 함유 된장의 발효 중 이화학적 특성 및 생리활성의 변화 vol.24, pp.1, 2009, https://doi.org/10.11002/kjfp.2017.24.1.134
  7. Aspergillus oryzae와 단백질 분해효소 첨가에 따른 콩알메주 된장의 이화학적 특성 변화 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.697
  8. Comparison of primary and secondary metabolite compositions and antioxidant effects of specific soybean cultivars vol.26, pp.5, 2009, https://doi.org/10.11002/kjfp.2019.26.5.555