DOI QR코드

DOI QR Code

Different oxidative burst patterns occur during host and nonhost resistance responses triggered by Xanthomonas campestris in pepper

  • Kwak, Youn-Sig (Department of Applied Biology & Enviromental Sciences, Research Institute of Life Science, Gyeongsang National University) ;
  • Han, Ki-Soo (Department of Applied Biology & Enviromental Sciences, Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Jung-Han (Department of Applied Biology & Enviromental Sciences, Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Kyung-Hee (The Aging-associated Disease Research Center and Department of Microbiology, Yeungnam University College of Medicine) ;
  • Chung, Woo-Sik (Enviromental Biotechnology National Core Research Center and Division of Applied Life Science(BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Mysore, Kirankumar S. (Plant Biology Division, Samuel Roberts Noble Foundation) ;
  • Kwon, Young-Sang (Department of Applied Biology & Enviromental Sciences, Research Institute of Life Science, Gyeongsang National University) ;
  • Kim, Hee-Kyu (Department of Applied Biology & Enviromental Sciences, Research Institute of Life Science, Gyeongsang National University) ;
  • Bae, Dong-Won (Central Instrument Facility, Gyeongsang National University)
  • Published : 2009.09.30

Abstract

The hypersensitive reaction (HR) is the most common plant defense reaction against pathogens. HR is produced during both host- and nonhost-incompatible interactions. Several reports suggest that similarities exist between host and nonhost resistances. We assayed the pattern of generation of reactive oxygen species (ROS) and scavenging enzyme activities during nonhost pathogen-plant interactions (Xanthomonas campestris pv. campestris/Capsicum annuum L.) and incompatible host pathogen-plant interactions (Xanthomonas campestris pv. vesicatoria race1/Capsicum annuum L.). Both ${O_2}^-\;and\;H_2O_2 $ accumulated much faster during nonhost resistance when compared to the host resistance. The scavenging enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were also different during the host- and nonhost-incompatible interactions. CAT activity was much higher during nonhost resistance, and several new isozymes of SOD and POX were detected during nonhost resistance when compared to the host resistance. Lipoxygenase (LOX) activity was higher in host resistance than nonhost resistance during the early stages of infection. Interestingly, the nitric oxide (NO) radical accumulated equal amounts during both host and nonhost resistance at early stages of infection. Further studies are needed to determine the specific pathways underlying these differences between host and nonhost resistance responses.

Keywords

References

  1. Adam, A.L., Bestwick, C.S., Barna, B., Mansfield, J.W. (1995) Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. Planta 197:240-249 https://doi.org/10.1007/BF00202643
  2. Alvarez, M.E., Pennell, R.I., Meijer, P., Ishikawa, A., Dixon, R., Lamb, C. (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773-784 https://doi.org/10.1016/S0092-8674(00)81405-1
  3. Baker, C.J., Orlandi, E.W. (1995) Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33:299-321 https://doi.org/10.1146/annurev.py.33.090195.001503
  4. Beligni, M.V., Lamattina, L. (2000) Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215-221 https://doi.org/10.1007/PL00008128
  5. Bohland, C., Balkenhohl, T., Loers, G., Feussner, I., Grambow, H.J. (1997) Differential induction of lipoxygenase isoform in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan and methyl jasmonate. Plant Physiol. 114:679-685 https://doi.org/10.1104/pp.114.2.679
  6. Bowler, C. Van-Camp, W., Van-Montagu, M., Inze, D. (1994) Superoxide dismutase in plants. Crit. Rev. Plant Sci. 13: 199-218 https://doi.org/10.1080/713608062
  7. Bradford. (1976) A rapid and sensitive methods for the quantitation of microgram of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Cacas JL, Marmey P, Montillet JL, Sayegh-Alhamdia M, Jalloul A, Rojas-Mendoza A, Clerivet A, Nicole M. (2009). A novel patatin-like protein from cotton plant, GhPat1, is co-expressed with GhLox1 during Xanthomonas campestris-mediated hypersensitive cell death. Plant Cell Rep. 28(1):155-164 https://doi.org/10.1007/s00299-008-0622-x
  9. Chamnongpol, S., Willekens, H., Moeder, W, Langebartels, C. Sandermann, H., Montagu, M., Inze, D., Camp, W. (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 95:5818-5823 https://doi.org/10.1073/pnas.95.10.5818
  10. Christopher-Kozjan, R., and Heath, C.M. (2003) Cytological and pharmacological evidence that biotrophic fungi trigger different cell death execution processes in host and nonhost cells during the hypersensitive response. Physiol. Mol. Plant Pathol. 62:265-275 https://doi.org/10.1016/S0885-5765(03)00088-2
  11. Chta, H., Shida, K., Peng, Y., Furusawa, I., Shishiyama, J., Aibara, S., Morita, Y. (1991) A lipoxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiol. 97:94-98 https://doi.org/10.1104/pp.97.1.94
  12. Conrads-Strauch, J., Dow, J.M., Milligan, D.E., Parra, R., Daniels, M.J. (1990) Induction of hydrolytic enzymes in Brassica campestris in response to pathovars of Xanthomonas campestris. Plant Physiol. 93:238-243 https://doi.org/10.1104/pp.93.1.238
  13. Del Rio, L.A., Corpas, F.J., Barroso, J.B. (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783-792 https://doi.org/10.1016/j.phytochem.2004.02.001
  14. Delledonne, M., Xia, Y., Dixon, R.A., Lamb, C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588 https://doi.org/10.1038/29087
  15. Desagher, S., Glowinski, J., Premont, J. (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci. 17:9060-9067
  16. Do, H.M., Hong, J.K., Jung, H.W., Kim, S.H., Ham, J.H., Hwang, B.K. (2003) Expression of peroxidase-like genes, $H_2O_2$ production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Mol. Plant-Microbe Interact. 16:196-205 https://doi.org/10.1094/MPMI.2003.16.3.196
  17. Durner, J., Wendehenne, D., Klessig, D.F. (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA. 95:10328-10333 https://doi.org/10.1073/pnas.95.17.10328
  18. Fan XW, Li FM, Song L, Xiong YC, An LZ, Jia Y, Fang XW. (2009) Defense strategy of old and modern spring wheat varieties during soil drying. Physiol Plant. 136(3):310-323 https://doi.org/10.1111/j.1399-3054.2009.01225.x
  19. Feussner, I., Wasternack, C. (2002) The lipoxygenase pathway. Annu. Rev. Plant Biol. 53:275-297 https://doi.org/10.1146/annurev.arplant.53.100301.135248
  20. Grant, M., Mansfield, J. (1999) Early events in host-pathogen interactions. Curr. Opin. Plant Biol. 2:312-319 https://doi.org/10.1016/S1369-5266(99)80055-7
  21. Grant, M., Brown, I., Adams, S., Knight, M., Ainslie, A. and Mansfield, J. (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. The Plant Journal, 23:441-450 https://doi.org/10.1046/j.1365-313x.2000.00804.x
  22. Hammond-Kosack, K.E., Jones, J.D.G. (1996) Resistance genedependent plant defense responses. Plant Cell 8:1773-1791 https://doi.org/10.1105/tpc.8.10.1773
  23. Huckelhoven, R., Kogel, K. (2003) Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance? Planta 216:891-902 https://doi.org/10.1007/s00425-003-0973-z
  24. Jabs, T., Tschope, M., Colling, C., Hahlbrock, K., Scheel, D. (1997) Elicitor-stimulated ion fluxes and ${O_2}^-$ from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA. 94:4800-4805 https://doi.org/10.1073/pnas.94.9.4800
  25. Keen, N.T. (1990) Gene-for-gene complimentarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447-463 https://doi.org/10.1146/annurev.ge.24.120190.002311
  26. Keppler, L.D., Baker, C.J., Atkinson, M.M. (1989) Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathol. 79:974-978 https://doi.org/10.1094/Phyto-79-974
  27. Koch, E., Meier, B.M., Eiben, H., Slusarenko, A. (1992) A Lipoxygenase from leaves of tomato (Lycopersicon esculentum Mill.) is induced in response to plant pathogenic Pseudomonas. Plant Physiol. 99:571-576 https://doi.org/10.1104/pp.99.2.571
  28. Lam, E., Kato, N., Lawton, M. (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848-853 https://doi.org/10.1038/35081184
  29. Lamb, C., Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251-275 https://doi.org/10.1146/annurev.arplant.48.1.251
  30. Leon, J., Lawton, M.A., Raskin, I. (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol. 108:1673-1678 https://doi.org/10.1104/pp.108.4.1673
  31. Levine, A., Tenhaken, R., Dixon, R., Lamb, C. (1994) $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593. https://doi.org/10.1016/0092-8674(94)90544-4
  32. Leyen, K., Duvoisin, R.M., Engelhardt, H., Wiedmann, M. (1998) A function for lipoxygenase in programmed organelle degradation. Nature 395:392-395 https://doi.org/10.1038/26500
  33. Leto TL, Geiszt M. (2006) Role of Nox family NADPH oxidases in host defense. Antioxid Redox Signal. 8(9-10):1549-1561 https://doi.org/10.1089/ars.2006.8.1549
  34. Marois, E,, Van den Ackerveken, G,, Bonas, U. (2002) The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact. 15:637-646 https://doi.org/10.1094/MPMI.2002.15.7.637
  35. Mittler, R., Seskar, V.S.M., Lam, E. (1996) Inhibition of programmed cell death in tobacco plants during a pathogeninduced hypersensitive response at low oxygen pressure. Plant Cell 1991-2001
  36. Murphy, M.E, Noack, E. (1994) Nitric oxide assay using hemoglobin method. Methods Enzymol. 233:240-250 https://doi.org/10.1016/S0076-6879(94)33027-1
  37. Mysore, K.S., Ryu, C. (2004) Nonhost resistance: how much do we know? Trends Plant Sci. 9:97-104 https://doi.org/10.1016/j.tplants.2003.12.005
  38. Park, H.J., Miura, Y., Kawakita, K., Yoshioka, H., Doke, N. (1998) Physiological mechanisms of a sub-systemic oxidative burst triggered by elicitor-induced local oxidative burst in potato tuber slices. Plant Cell Physiol. 39:1218-1225 https://doi.org/10.1093/oxfordjournals.pcp.a029323
  39. Rance, I., Fournier, J., Esquerre-Tugaye, M. (1998) The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc. Natl. Acad. Sci. USA. 95:6554-6559. https://doi.org/10.1073/pnas.95.11.6554
  40. Schornack S, Meyer A, R\ddot{o}mer P, Jordan T, Lahaye T. (2006) Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol. 163(3):256-272 https://doi.org/10.1016/j.jplph.2005.12.001
  41. Tada, Y., Mori, T., Shinogi, T., Yao, N., Takahashi, S., Betsuyaku, S., Sakamoto, M., Park, P., Nakayashiki, H., Tosa, Y., Mayama, S. (2004) Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Mol. Plant-Microbe Interact. 17:245-253 https://doi.org/10.1094/MPMI.2004.17.3.245
  42. Thomas, I., Loeffler, C., Sinha, A.K., Gupta, M., Krischke, M., Steffan, B., Roitsch, T., Mueller, M.J. (2003) Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J. 34:363-375 https://doi.org/10.1046/j.1365-313X.2003.01730.x
  43. Thordal-Christensen, H. (2003) Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6:351-357 https://doi.org/10.1016/S1369-5266(03)00063-3
  44. Titarenko, E., Rojo, E., Leon, J., Sanchez-Serrano, J.J. (1997) Jasmonic acid-dependent and -independent signaling pathway control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol. 115:817-826 https://doi.org/10.1104/pp.115.2.817
  45. Valgimigli, L., Pedulli, G.F., Paolini, M. (2001) Measurement of oxidative stress by EPR radical-probe technique. Free Radical Biology & Medicine. 31:708-716 https://doi.org/10.1016/S0891-5849(01)00490-7
  46. Veronesi, C., Rickauer, M., Fournier, J., Pouenat, M., Esquerre-Tugaya, M. (1996) Lipoxygenase gene expression in the tobacco-Phytophthora parasitica Nicotianae interaction. Plant Physiol. 112:997-1004 https://doi.org/10.1104/pp.112.3.997
  47. Wendehenne, D., Durner, J., Klessig, D.F. (2004) Nitric oxide: a new player in plant signaling and defense responses. Curr. Opin. Plant Biol. 7:449-455 https://doi.org/10.1016/j.pbi.2004.04.002
  48. Wojtaszek, P. (1997) Oxidative burst: an early response to pathogen infection. Biochem. J. 322:681-692 https://doi.org/10.1042/bj3220681
  49. Wright, C., Beattie, G.A. (2004) Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 101:3269-3274 https://doi.org/10.1073/pnas.0400461101
  50. Yoshioka, H., Numata, N., Nakakima, K., Katou, S., Kawakita, K., Rowland, O., Jones, D.G.J., Doke, N. (2003) Nicotiana benthamiana $gp91^{phox}$ homologs NbrbohA and NbrbohB participate in $H_2O_2$ accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718 https://doi.org/10.1105/tpc.008680
  51. Zhang, C., Czymmek, K.J., Shapiro, A.D. (2003) Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol. Plant-Microbe Interact. 16: 962-972 https://doi.org/10.1094/MPMI.2003.16.11.962
  52. Zou, P., Schrempf, H. (2000) The heme-independent manganeseperoxidaseactivity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Eur. J. Biochem. 267:2840-2849 https://doi.org/10.1046/j.1432-1327.2000.01259.x

Cited by

  1. Changes of antioxidant enzymes of mung bean [Vigna radiata (L.) R. Wilczek] in response to host and non-host bacterial pathogens vol.56, pp.1, 2016, https://doi.org/10.1515/jppr-2016-0016
  2. Effects of bacterial populations, temperature and exogenous hydrogen peroxide on the induction of the hypersensitive response in Nicotiana tabacum against Xanthomonas perforans vol.57, pp.2, 2017, https://doi.org/10.1515/jppr-2017-0019