References
- 백창현 (2006). 하천흐름해석을 위한 3차원 상향가중 유한요소모형의 개발. 박사학위논문, 경북대학교, pp. 6-11
- 윤용남, 박무종 (1994). “FESWMS-2DH에 의한 한강 하류부의 수리특성 분석.” 대한토목학회논문집, 제14권, 제4호 pp. 847-857
- 윤태훈 (1982). “유한요소법에 의한 항만에서의 토사이동 추정모형.” 대한토목학회논문집, 제2권, 제2호, pp. 847-857
- 한건연, 김상호 (2000). “Petrov-Galerkin 기법에 의한 하천에서의 이송-확산 해석.” 대한토목학회논문집, 제20권, 제2-B호, pp. 45-53
- 한건연, 박경옥, 백창현 (2003). “SU/PG 기법에 의한 하천흐름의 유한요소해석 : II. 적용.” 대한토목학회논문집, 제24권, 제3B호, pp. 193-199
- 한건연, 이종태, 박재홍 (1996). “개수로내의 점변 및 급변 부정류에 대한 유한요소해석: I. 이론 및 수치안정성 해석.” 한국수자원학회논문집, 제29권, 제4호, pp. 167-178
- Alam, M.M. and Bhuiyan, M.A. (1995). “Collocation finite element simulation of dam-break flows.” Journal of Hydraulics. Engineering, ASCE, Vol. 121, No. 2, pp. 118-128 https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(118)
- Allaire, P.E. (1985). Basis of the finite element method, Ph.D. dissertation, University of Virginia, pp. 8-24
- Bell, S.W., Elliot, R.C. and Chaudhry, M.H. (1992). “Experimental results of two-dimensional dam-break flows.” Journal of Hydraulics Research Vol. 30, No. 2, pp. 225-252 https://doi.org/10.1080/00221689209498936
- Berger, R.C. (1993). A Finite Element Scheme Shock Capturing, Technical Report HL-93-12, pp. 1-8
- Berger, R.C. and Howington, S.E. (2005). “Discrete Fluxes and Mass Balances in Finite Elements.” Journal of Hydraulics Engineering, Vol. 128, pp. 97-92 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(87)
- Daubert, A. and Graffe, O. (1967). Quelques aspects des ecoulements presque horizontaux a deux dimensions en plan non permants application aux estuaires,. La Houille Blanche, No. 8, pp. 847-860 https://doi.org/10.1051/lhb/1967059
- Dupont, T. (1973). “Galerkin methods for first-order hyperbolics : An example.” SIAM Journal of Numerical Analysis, Vol. 10, pp. 890-899 https://doi.org/10.1137/0710074
- Gee, D.M. and MacArthur, R.C. (1981). “Evaluation and Application of the Generalized Finite Element Hydrodynamics Model, RMA-2.” Two-Dimensional Modeling, Hydrologic Engineering Center, pp. 97-113
- Goutal, N. and Maurel, F. (1997). “High resolution schemes for hyperbolic conservation laws.” Journal of Computational Physics, Vol. 49, No.3, pp. 357-393
- Gray, W.G. (1980). “Do Finite Element Models Simulate Surface Flow?” Finite Elements in Water Resources III, Univ. of Mississippi Press, pp. 122-136
- Hicks, F.E. and Steffler, P.M. (1992). “Characteristic dissipative Galerkin scheme for open channel flow.” J. of Hyd. Eng., ASCE, Vol. 118, No. 2, pp. 337-352 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(337)
- Katopodes, N.D. (1984). “A dissipative Galerkin scheme for open-channel flow.” Journal of Hydraulics Engineering, ASCE, Vol. 110, No. 4, pp. 450-466 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(450)
- King, I.P. and Norton, W.R. (1978). “Recent application of RMA's finite element models for two-dimensional hydrodynamics and water quality.” Finite Element in Water Resources, Pentech Press, pp. 81-99
- Lee, J.K. and Froehlich, D.C. (1986). Review of Literature on the Finite Element Solution of the Equations of Two-Dimensional Flow in the Horizontal Plane, U. S. Geological Survey Circular 1009, pp. 1-65
- Norton, W.R. (1980). “EBMUD Hydrodynamic and Water Quality Models for San Francisco Bay.” Resources Management Associates, pp. 1-260
- Stockstill, R.L. and Berger, R.C. (1994). A Two- Dimensional Flow Model for High-Velocity Channels, Technical Report REMR-HY-12, pp. 1-11
- Van Rijn, L.C. (1990). Aqua Publications, Amsterdam, The Netherlands, pp. 5-35
- Walters R.A. (1983). “Numerically induced oscillations in finite element approximations to shallow water equations.” International Journal for Numerical Methods in Fluids, Vol. 3, pp. 591-604 https://doi.org/10.1002/fld.1650030606
- Walters, R.A. and Cheng, R.T. (1978). “A Two-Dimensional Hydrodynamic Model of a Tidal Estuary.” Finite Elements in Water Resources, Pentech, pp. 3-21
- Weiyan, T. (1992). Shallow water hydrodynamics, Elsevier Oceanography Series, pp. 1-37
- Zienkiewicz, O.C. and Codina, R. (1996). “A general algorithm for compressible and incompressible flow-Part I. The split, characteristic based scheme.” International Journal for Numerical Methods in Fluids, Vol. 20, pp. 869-885 https://doi.org/10.1002/fld.1650200812
- Zienkiewicz, O.C., Nithiarasu, P., Codina, R. and Vazquez, M. (1999). “The characteristic based split procedure: An efficient and accurate algorithm for fluid problems.” International. Journal for Numerical Methods in Fluids, Vol. 31, pp. 359-392 https://doi.org/10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
Cited by
- Improvement of 2-D Finite Element Model Using Analysis of Initial Water Surface Elevation vol.12, pp.6, 2012, https://doi.org/10.9798/KOSHAM.2012.12.6.267
- Analysis of Flow and BOD Transport at the Downstream of Nam River Dam Using 2-D and 3-D Semi-coupled Models vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.331
- Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method vol.44, pp.7, 2011, https://doi.org/10.3741/JKWRA.2011.44.7.511