DOI QR코드

DOI QR Code

Relative Microalgal Concentration in Prydz Bay, East Antarctica during Late Austral Summer, 2006

  • Mohan, Rahul (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences)) ;
  • Shukla, Sunil Kumar (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences)) ;
  • Anilkumar, N. (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences)) ;
  • Sudhakar, M. (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences)) ;
  • Prakash, Satya (Physical Research Laboratory) ;
  • Ramesh, R. (Physical Research Laboratory)
  • Published : 2009.09.01

Abstract

Microalgae using a submersible fluorescence probe in water column (up to 100 m) were measured during the austral summer of 2006 (February) in Prydz Bay, East Antarctica (triangular-shaped embayment in the Indian sector of Southern Ocean). Concurrently, environmental parameters such as temperature, salinity and nitrogen (nitrate, ammonium, urea) uptake rates were measured. The concentration of phytoplankton is relatively high due to availability of high nutrients and low sea surface temperature. Phytoplankton community is dominated by diatoms whereas cryptophytes are in low concentration. The maximum concentration of total chlorophyll is 14.87 ${\mu}g\;L^{-1}$ and is attributed to upwelled subsurface winter water due to local wind forcing, availability of micro-nutrients and increased attenuation of photosynthetically available radiation (PAR). Concentration of blue-green algae is low compared to that of green algae because of low temperature. Comparatively high concentration of yellow substances is due to the influence of Antarctic melt-water whereas cryptophytes are low due to high salinity and mixed water column. Varied concentrations of phytoplankton at different times of Fluoroprobe measurements suggest that the coastal waters of Prydz Bay are influenced by changing sub-surface water temperature and salinity due to subsurface upwelling induced by local winds as also melting/freezing processes in late summer. The productivity is high in coastal water due to the input of macro as well as micro-nutrients.

Keywords

References

  1. Archambeau A.S., Pierre C., Poisson A. and Schauer B. 1998. Distribution of oxygen and carbon stable isotopes and CFC-12 in the water masses of the Southern Ocean at $30^{\cir}E$ from South Africa to Antarctica: results of CIVA1 cruise. J. Mar. Syst. 17: 25-38 https://doi.org/10.1016/S0924-7963(98)00027-X
  2. Arrigo K.R., Robinson D.H., Worthen D.L., Dunbar R.B., DiTullio G.R., VanWoert M. and Lizotte M.P. 1999. Phytoplankton Community Structure and the Drawdown of Nutrients and $CO_{2}$ in the Southern Ocean. Science. 283: 365-367 https://doi.org/10.1126/science.283.5400.365
  3. Babichenko S., Kaitala S., Leeben A., Poryvkina L. and Sépala J. 1999. Phytoplankton pigments and dissolved organic matter distribution in the Gulf of Riga. J. Mar. Syst. 23: 69-82 https://doi.org/10.1016/S0924-7963(99)00051-2
  4. Beutler M., Wiltshire K.H., Meyer B., Moldaenke C., Luring C. and Meyrrhöfer M.A. 2002. fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Res. 72: 39-53 https://doi.org/10.1023/A:1016026607048
  5. Bidigare R.R., Frank T.J., Zastrow C. and Brooks J.M. 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep Sea Res. 33: 923-937 https://doi.org/10.1016/0198-0149(86)90007-5
  6. Bricaud A., Morel A. and Prieur L. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnolog. Oceanogra. 26: 43-53
  7. Buma A.G.J., Gieskes W.W.C. and Thomsen H.A. 1992. Abundance of Cryptophyceae and chlorophyll-b contain-ing organisms in the Weddell-Scotia Confluence area in the spring of 1988. Pol. Biol. 12: 43-52
  8. Carrick H.J. and Schelske C.L. 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnolog. Oceanogra. 47: 1613-1621
  9. Cowles T.J., Desidario R.A. and Neuer S. 1992. In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Mar. Biol. 115: 217-222 https://doi.org/10.1007/BF00346338
  10. Davis A.M. and Mcnider R.T. 1997. The development of Antarctic Winds and implications for the Coastal Ocean. J. Atmos. Sci. 54: 1248-1261 https://doi.org/10.1175/1520-0469(1997)054<1248:TDOAKW>2.0.CO;2
  11. Deacon G.E.R. 1982. Physical and biological zonation in the Southern Ocean. Deep-Sea Res. Part A 29: 1-16 https://doi.org/10.1016/0198-0149(82)90058-9
  12. Desidario R.A., Moore C., Lantz C. and Cowles T.J. 1997. Multiple excitation fluorometer for in situ oceanographic applications. App. Opt. 36: 1289-1296 https://doi.org/10.1364/AO.36.001289
  13. Edgar R.K. and Laird K. 1993. Computer simulation of error rates of Poisson-based interval estimates of plankton abundance. Hydrobiol. 264: 65-77 https://doi.org/10.1007/BF00014094
  14. El-Sayed S.Z. and Fryxell G.A. 1993. Phytoplankton. In: Friedman E.I. (ed.), Antarctic Microbiology. Wiley-Leiss, Inc. Publ. pp. 65-122
  15. Fogg G.E. 1977. Aquatic primary production in the Antarctica. Philos. Trans. Roy. Soc., London 179: 27-38 https://doi.org/10.1098/rstb.1977.0069
  16. Gibson J.A.E. and Trull T.W. 1999. Annual cycle of $fCO_{2}$ under sea-ice and in open water in Prydz Bay, East Antarctica. Mar. Chem. 66: 187-200 https://doi.org/10.1016/S0304-4203(99)00040-7
  17. Gordon A.L., Molinelli E. and Baker T. 1978. Large-scale relative dynamic topography of the Southern Ocean. J. Geophys. Res. 83: 3023-3032 https://doi.org/10.1029/JC083iC06p03023
  18. Guillard R.R.L. and Kilham P. 1977. The ecology of marine planktonic diatoms. In: Werner D. (ed.) The Biology of Diatoms, University of California Press. pp. 372-469
  19. Hewes C.D., Holm-Hansen O. and Sakshaug E. 1985. Alternate carbon pathways at low trophic levels in the Antarctic food web. In: Siegfried W.R., Condy P.R. amd Laws R.M. (eds), Antarctic Nutrients Cycles and Food Webs. Springer, Berlin. pp. 277-283
  20. Hilton J., Rigg E. and Jaworski G. 1989. Algal differentiation using in vivo fluorescence spectra. J. Plank. Res. 11: 65-74 https://doi.org/10.1093/plankt/11.1.65
  21. Holm-Hansen O. 1965. Fluorometric determination of Chlolophyll. J. de Cons. Pour. Int. Exp. de la Mer. 30: 3-15 https://doi.org/10.1093/icesjms/30.1.3
  22. Holm-Hansen O., El-Sayed S.Z., Franceschini G. and Cuhel R. 1977. Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In: Llano G. (ed.), Adaptations with in Antarctic Ecosystems. Gulf Publishing, Houston. pp. 11-50
  23. Jacobs S.S. and Georgi D.T. 1977. Observations on the southwest Indian Antarctic Ocean. In: Angel, M.V. (Ed.), A Voyage of Discovery. Deep-Sea Research, Part A, (Suppl.) 24: 43-8
  24. Kang S.-H. and Fryxell G.A. 1991. Most abundant diatom species in water column assemblages from five Leg 119 Drill sites in Prydz Bay, Antarctica: Distributional Patterns. In: Barron, J. et al. 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 119
  25. Kiefer D.A. 1973. Fluorescence properties of natural phytoplankton populations. Mar. Biol. 22: 263-269 https://doi.org/10.1007/BF00389180
  26. Kolboeski J. and Schreiber U. 1995. Computer-controlled phytoplankton analyzer based on a 4-wavelenght PAM Chl fluorescence. In: Mathis, P. (ed.), Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, Dordrecht/ Boston/London Vol. 5: 825-828
  27. Kopczynska E.E, Goeyens L., Semeneh M. and Dehairs F. 1995. Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its $\delta^{13}$C values. Journal of Plankton Research 17: 685-707 https://doi.org/10.1093/plankt/17.4.685
  28. Kumar S., Ramesh R., Sardesai S. and Sheshshayee M.S. 2004. High new production in the Bay of Bengal: Possible causes and implications, Geophys. Res. Lett. 31: 1-4 https://doi.org/10.1029/2004GL021005
  29. Merchant H.J., Buck K.R., Garrison D.L. and Thomsen H.A. 1989. Mantoniella in Antarctic waters including the description of M. Antarctica sp. nov. (Prasinophyceae). J. Phycol. 25: 167-174 https://doi.org/10.1111/j.0022-3646.1989.00167.x
  30. Middleton J.H. and Humphries S.E. 1989. Thermohaline structure and mixing in the region of Prydz Bay, Antarctica. Deep Sea Res. -A 36: 1255-1266 https://doi.org/10.1016/0198-0149(89)90104-0
  31. Millie D.F., Schofield O.M.E., Kirkpatrick G.J., Johnson G. and Evens T.J. 2002. Using absorbance and fluorescence spectra to discriminate micro-algae. Eur. J. Phycol. 37: 313-332 https://doi.org/10.1017/S0967026202003700
  32. Mitchell B.G. and Holm-Hansen O. 1991. Observations and modelling of the Antarctic phytoplankton crop in relation to mixing depth. Deep-Sea Research 38: 981-1007 https://doi.org/10.1016/0198-0149(91)90093-U
  33. Moline M.A. and Prezelin B.B. 1996. Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over sub-seasonal, seasonal and inter-annual time scales. Mar. Eco. Prog. Ser. 145: 143-160 https://doi.org/10.3354/meps145143
  34. Mangoni O., Modigh M., Conversano F., Carrada G.C. and Saggiomo V. 2004. Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica. Deep Sea Research Part I 51: 1601-1617 https://doi.org/10.1016/j.dsr.2004.07.006
  35. Mura M.P., Satta M.P. and Agusti S. 1995. Water-mass influence of summer Antarctic phytoplankton biomass and community structure. Pol. Biol. 15: 15-20 https://doi.org/10.1007/BF00236119
  36. Nicol S., Pauly T., Bindoff N.L. and Strutton P.G. 2000. “BROKE” a biological/oceanographic survey off the coast of East Antarctica (80-1500 E) carried out in January-March 1996. Deep-Sea Res.-II 47: 2281-2298 https://doi.org/10.1016/S0967-0645(00)00026-6
  37. Nunes Vaz R.A. and Lennon G.W. 1996. Physical Oceanography of the Prydz Bay region of Antarctic waters. Deep Sea Res. -I 43: 603-641 https://doi.org/10.1016/0967-0637(96)00028-3
  38. Oldham P.B., Zillioux E.J. and Warner I.M. 1985. Spectral “fingerprinting” pf phytoplankton populations by twodimensional fluorescence and Fourier- transform-based pattern recognition. J. Mar. Res. 43: 893-906 https://doi.org/10.1357/002224085788453903
  39. Orsi A., Whitworth T. and Nowlin W. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. -I 42: 641-673 https://doi.org/10.1016/0967-0637(95)00021-W
  40. Park Y.H., Charriaud E. and Fieux M. 1998. Thermohaline structure of Antarctic surface water/winter water in the Indian sector of the Southern Ocean. J. Mar. Sys. 17: 5-23 https://doi.org/10.1016/S0924-7963(98)00026-8
  41. Porynkina L., Babichenko S., Kaitala S., Kuosa H. and Shalapjonok A. 1994. Spectral fluorescence signatures in the characterization of phytoplankton community composition. J. Plank. Res. 16: 1315-1327 https://doi.org/10.1093/plankt/16.10.1315
  42. Schloss I. and Estrada M. 1994. Phytoplankton composition in the Weddell-Scotia Confluence area during austral spring in relation to hydrography. Pol. Biol. 14: 77-90 https://doi.org/10.1007/BF00234969
  43. Schwarz J.N. and Schodlok M.P. 2008. Icebergs boost phytoplankton growth in the Southern Ocean. Nature Preceedings hdl:10101/npre. 1706.1
  44. Smith N.R., Zhaoqlan D., Kerry K.R. and Wright S. 1984. Water masses and Circulation in the region of Prydz Bay, Antarctica. Deep Sea Res.-A 31: 1121-1147. https://doi.org/10.1016/0198-0149(84)90016-5
  45. Smith Jr., K.L., Robison B.H., Helly J.J., Kaufmann R.S., Ruhl H.A., Shaw T.J., Twining B.S. and Vernet M., 2007. Free-Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea. Science 317: 478-482 https://doi.org/10.1126/science.1142834
  46. Soohoo J.B., Kiefer D.A., Collins D.J. and McDermid I.S. 1986. In vivo fluorescence excitation and absorption spectra of marine phytoplankton: I. Taxonomic characteristics and responses to photo-adaptation. J. Plank. Res. 8: 97-214 https://doi.org/10.1093/plankt/8.1.197
  47. Sparrow M.D., Heywood K.J., Brown J. and Stevens D.P. 1996. Current structure of the South Indian Ocean. J. Geophys. Res. 101: 6377-6391 https://doi.org/10.1029/95JC03750
  48. Srivastava R., Ramesh R., Prakash S., Anilkumar N. and Sudhakar M. 2007. Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean. Geophys. Res. Lett. 34, L24603, doi:10.1029/2007GL031790
  49. Stagg H. 1985. The structure and origin of Prydz Bay and Mac. Robertson Shelf, East Antarctica. Tectonophy. 114: 315-340 https://doi.org/10.1016/0040-1951(85)90019-8
  50. Strickland J.D.H. and Parsons T.R. 1965. A manual of sea water analysis. Bull. Fisheries Res. Board Can. 125, 203 pp.
  51. Strutton P.G., Griffiths F.B., Waters R.L., Wright S.W. and Bindoff N.L. 2000. Primary productivity off the coast of East Antarctica (80-1500E): January to March 1996. Deep-Sea Res.-II, 47: 2327-2362 https://doi.org/10.1016/S0967-0645(00)00028-X
  52. Swithinbank C.W.M., McClain P. and Little P. 1977. Drift tracks of Antarctic icebergs. Polar Rec. 18: 495-501 https://doi.org/10.1017/S0032247400000991
  53. Taylor D.L. and Lee C.C. 1971. A new cryptomonad from Antarctica: Cryptomonas cryophila sp. nov. Arch. f. Microbiol. 75: 269-280 https://doi.org/10.1007/BF00407688
  54. Tchernia P. and Jeannin P.F. 1980. Observations on the Antarctic East Wind drift using tabular icebergs tracked by satellite Nimbus F (1975-1977). Deep-Sea Res., Part A 27: 467-474 https://doi.org/10.1016/0198-0149(80)90056-4
  55. Tolstikov E.E. 1966. Atlas Antarktiki (Vol. 1), Moscow (G.U.C.K.). (English translation, Soviet Geography: Reviews and Translations, Am. Geogr. Soc, 8 (1967)
  56. Treguer P. and Jacques G. 1992. Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Pol. Biol. 12: 149-162 https://doi.org/10.1007/BF00238255
  57. Vincent W.F., Neale P.J. and Richerson P.J. 1984. Photoinhibition: algal responses to bright light during diel stratification and mixing in a tropical alpine lake. J. Phycol. 20: 201-211 https://doi.org/10.1111/j.0022-3646.1984.00201.x
  58. Yentsch C.H. and Menzel D.W. 1963. A method for the determination of phytoplankton Chlorophyll by fluorescence. Deep Sea Res. 10: 1221-1231
  59. Yentsch C.H. and Phinney D.A. 1985. Spectral fluorescence: A taxonomic tool for studying the structure of phytoplankton populations. J. Plank. Res. 7: 617-632 https://doi.org/10.1093/plankt/7.5.617
  60. Yentsch C.H. and Yentsch C.M. 1979. Fluorescence spectral signatures: The characterization of phytoplankton populations by the use of excitation and emission spectra. J. Mar. Res. 37: 471-483
  61. Zhu G-H., Ning, X-R., Cai Y-M. and Liu Z-L. 2003. Phytoplankton in Prydz Bay and its adjacent sea area of Antarctica during austral summer (1998/1999). Acta Botanica Sinica 45: 390-398

Cited by

  1. An isotopic perspective on the correlation of surface ocean carbon dynamics and sea ice melting in Prydz Bay (Antarctica) during austral summer vol.83, 2014, https://doi.org/10.1016/j.dsr.2013.08.006
  2. Zn/Si records in diatom opal from Prydz Bay, East Antarctica vol.381, 2016, https://doi.org/10.1016/j.margeo.2016.08.009