DOI QR코드

DOI QR Code

Potential of Benthic Diatoms Achnanthes longipes, Amphora coffeaeformisand Navicula sp. (Bacillariophyceae) as Antioxidant Sources

  • Lee, Seung-Hong (Faculty of Applied Marine Science,Cheju National University) ;
  • Karawita, Rohan (Faculty of Applied Marine Science,Cheju National University) ;
  • Affan, Abu (Department of Oceanography,Cheju National University) ;
  • Lee, Joon-Baek (Department of Oceanography,Cheju National University) ;
  • Lee, Ki-Wan (Faculty of Applied Marine Science,Cheju National University) ;
  • Lee, Bae-Jin (Marine Bioprocess Co. Ltd.,Pukyong National University) ;
  • Kim, Dong-Woo (Central REcearch Center,Natural F&P Co.) ;
  • Jeon, You-Jin (Faculty of Applied Marine Science,Cheju National University)
  • Published : 2009.03.01

Abstract

Recently, interest in plant-derived food additives has developed natural antioxidants, in order to alternate syn-thetic antioxidants with several disadvantages. In the present study, different organic fractions from solvent parti-tions of 80% methanol extract from Jeju benthic diatoms, Achnanthes longipes, Navicula sp. and Amphora coffeaeformis was assessed for their potential antioxidant effects. Among the solvent fractions tested, n-hexane (80.4%) and 80% methanol extract (76.6%) from A. longipes, chloroform (63.2%) from Navicula sp. and n-hexane (67.4%) from A. cof-feaeformis were effective in DPPH free radical scavenging. Fractions of chloroform (53.4%) and n-hexane (53.1%) from A. longipes exhibited higher activities on $H_2O_2$ scavengin. Fraction of n-Hexane from A. longipes exhibited the highest hydroxyl radical scavenging activity and NO. scavenging activity (56.5% and 75.6%, respectively). Aqueous residue from A. coffeaeformis (75.6%) showed the highest metal chelating effect. chloroform and ethyl acetate frac-tion of all the diatoms exhibited significant antioxidant activities in lipid peroxidation inhibitory activity. In particu-lar, both chloroform and the ethyl ecetate fraction from A. longipes and A. coffeaeformis exhibited lipid peroxidation inhibitory activity significantly higher than that of $\alpha$- tocopherol. These data suggest that the Jeju benthic diatoms tested are rich in hydrophilic and hydrophobic antioxidative compounds with different antioxidative properties that can be applied in food industry.

Keywords

References

  1. Affan A., Karawita R., Jeon Y.J.., Kim B.Y. and Lee J.B. 2006. Growth characteristics, bio-chemical composition and antioxidant activities of benthic diatom Grammatophora marina from Jeju coast, Korea. Algae 21: 141-148 https://doi.org/10.4490/ALGAE.2006.21.1.141
  2. Affan A. and Lee J.B. 2004. Seasonal characteristic of phytoplankton dynamics and environmental factors in the coast of Mara-do and U-do, Jeju Island, Korea. Algae 9: 235-245
  3. AOAC. 1995. Official Method of Analysis of the Association of Official Analytical Chemists (16th ed.), Virginia, USA
  4. Buyukokuroglu M.E., Gulcin I., Oktay M. and Kufrevioglu O.I. 2001. In vitro antioxidant properties of dantrolene sodium. Pharmacol. Res. 44: 491-495 https://doi.org/10.1006/phrs.2001.0890
  5. Benedettia S., Benvenutia F., Pagliarnia S., Francoglia S., Scogliob S. and Canestraria F. 2004. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci. 75: 2353-2362 https://doi.org/10.1016/j.lfs.2004.06.004
  6. Brand-Williams W., Cuvelier M.E. and Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28: 25-30
  7. Chandler S.F. and Dodds J.H. 1993. The effect of phosphate, nitrogen, and sucrose on the production of phenolics and solasidine in callus cultures of Solanum laciniatum. Plant Cell Rep. 2: 105-110 https://doi.org/10.1007/BF00270178
  8. Chung S.K., Osawa T. and Kawakishi S. 1997. Hydroxyl radicalscavenging effects of spices and scavengers from black mustard (Brassica nigra). Biosci. Biotech. Biochem. 6: 118-123
  9. Decker E.A. And Welch B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric Food Chem. 38: 674-677 https://doi.org/10.1021/jf00093a019
  10. Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64: 97-112 https://doi.org/10.1146/annurev.bi.64.070195.000525
  11. Garrat D.C. 1964. The Quantitative Analysis of Drugs. Chapman and Hall, Tokyo, Japan, pp. 456-458
  12. Gulcin I., Beydemir S., Ahmet H.A., Elmasta M. and Buyukokuroglu M.E. 2004. In vitro antioxidant properties of morphine. Pharmacol. Res. 49: 59-66 https://doi.org/10.1016/j.phrs.2003.07.012
  13. Gulcin I., Oktay M., KI.,frevioglu O. and Aslan A. 2002. Determination of antioxidant activity of Iichen Cetraria islandica (L). Ach. J. Ethnopharmacol. 79: 325-329 https://doi.org/10.1016/S0378-8741(01)00396-8
  14. Halliwell B. 1991. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Ame. J. Med. 91: 14-19 https://doi.org/10.1016/0002-9343(91)90279-7
  15. Halliwell B. and Gutteridge J.M. 1989. Free radical in biology and medicine. Clarendon Press, Oxford. pp. 23-30
  16. Hirata T., Tanaka M., Ooike M., Tsunomura T. and Sakaguchi M. 2000. Antioxidant activities of phycocyanobilin prepared from spirulina platensis. J. Appl. Phycol. 12: 435-439 https://doi.org/10.1023/A:1008175217194
  17. Karawita R., Senevirathne M., Athukorala Y., Lee Y.J., Kim S.K.,Lee J.B. and Jeon Y.J. 2007. Protective effect of enzymatic extracts from microalgae against DNA damage induced by $H_{2}O_{2}$ Mar Biotech. 9: 479-490 https://doi.org/10.1007/s10126-007-9007-3
  18. Kardosova A. and Machova E. 2006. Antioxidant activity of medical plant polysaccherides. Fitoterapia 77: 367-373 https://doi.org/10.1016/j.fitote.2006.05.001
  19. Kikuzaki H. and Nakatan, N. 1993. Antioxidant effects of some ginger constituents. J. Food Sci. 58: 1407-1410 https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
  20. Kitada M., Igarashi K., Hirose S. and Kitagawa H. 1979. Inhibition by polyamines of lipid peroxidase formation in rat liver microsomes. Biochem. Biophys. Res. Commun. 87: 388-394 https://doi.org/10.1016/0006-291X(79)91808-4
  21. Korycka-Dahl M.B. and Richardson T. 1978. Activated oxygen species and oxidation of food constituents. Crit. Rev. Food Sci. Nutr. 10: 209-241 https://doi.org/10.1080/10408397809527250
  22. Lee S.H., Karawita R., Affan A., Lee J.B., Lee B.J. and Jeon Y.J. 2008. Potential antioxidant activities of enzymatic digests from benthic diatoms Achnanthes longipes, Amphora coffeaeformis, and Navicula sp. (Bacillariophyceae), J. Food Sci. Nutr. 13: 166-175 https://doi.org/10.3746/jfn.2008.13.3.166
  23. Liang S., Liu X., Chen F. and Chen Z. 2004. Current microalgal health food R and D activities in China. Hydrobiologia 512: 45-48 https://doi.org/10.1023/B:HYDR.0000020366.65760.98
  24. Liu F., Ng T.B., 2000. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci. 66: 725-735 https://doi.org/10.1016/S0024-3205(99)00643-8
  25. Lu Y. and Foo L.Y. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68: 81-85 https://doi.org/10.1016/S0308-8146(99)00167-3
  26. Moncada S., Palmer R.M. and Higgs E.A. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142
  27. Moure A., Dominguez H. and Pajaro J,C, 2006. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41: 447-456 https://doi.org/10.1016/j.procbio.2005.07.014
  28. Muller H.E. 1995. Detection of Hydrogen peroxide produced by Microorganism on ABTS-peroxidase medium. Zentralbl. Bakteriol. Mikrobio. Hyg. 259: 151-158
  29. Nagai T., Inoue I., Inoue H. and Suzuki N. 2003. Preparation and antioxidant properties of water extract of propolis. Food Chem. 80: 29-33 https://doi.org/10.1016/S0308-8146(02)00231-5
  30. Nakamura T., Nagayama K., Uchida K. and Tanaka R. 1996. Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish Sci. 62: 923-926
  31. Radi R., Beckman J.S., Bush K.M. and Freeman B.A. 1991. Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288: 481-487 https://doi.org/10.1016/0003-9861(91)90224-7
  32. Shahidi F. and Wanasundara P.K.J.P.D. 1992. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32: 67-103 https://doi.org/10.1080/10408399209527581
  33. Shim J.H. 1994. Illustrated Encyclopedia of Fauna and Flora of Korea. Marine Phytoplankton. Ministry of Education, Republic of Korea. 34: 487
  34. Sherwin E.R. 1990. Antioxidants. In: Branen A.I., Davidson P.M. and Salminen S. (eds), Food Additives. Marcel Dekker, New york. pp. 139-292
  35. Siriwardhana N., Lee K.W., Kim S.H., Ha J.W. and Jeon Y.J. 2003. antioxidant activity of Hizikia fusioformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci. Tech. Int. 9: 339-346 https://doi.org/10.1177/1082013203039014
  36. Spitz T.T. Bergman M., Moppes D., Grossman S. and Arad M.S. 2005. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J. App. Phycol. 17: 215-222 https://doi.org/10.1007/s10811-005-0679-7
  37. Ukeda H., Shimamura T., Tsubouchi M., Harada Y., Nakai Y. and Sawamura M. 2002. Spectrophotometric assay of superoxide anion formed in Maillard reaction based on highly water-soluble tetrazolium sait. Anal. Sci. 18: 1151-1154 https://doi.org/10.2116/analsci.18.1151
  38. Yang M.Y., Han Y.K. and Noh B.S. 2000. Analysis of lipid oxidation of soybean oil using the portable electronic nose. Korean J. Food Sci. Technol. 9: 146-150

Cited by

  1. Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea vol.33, pp.3, 2016, https://doi.org/10.1016/j.nbt.2016.02.002
  2. Screening for competition effects and allelochemicals in benthic marine diatoms and cyanobacteria isolated from an intertidal flat (southern North Sea) vol.51, pp.4, 2012, https://doi.org/10.2216/11-80.1
  3. Biochemical composition, biological activities and toxicological effects of two non-nodularin producing strains of Nodularia spumigena Mertens in Jürgens vol.25, pp.2, 2013, https://doi.org/10.1007/s10811-012-9899-9
  4. Screening for biological activities and toxicological effects of 63 phytoplankton species isolated from freshwater, marine and brackish water habitats vol.20, 2012, https://doi.org/10.1016/j.hal.2012.07.007
  5. Enzymatic Hydrolysis of Plants and Algae for Extraction of Bioactive Compounds vol.29, pp.4, 2013, https://doi.org/10.1080/87559129.2013.818012
  6. Antioxidant Activity of Enzymatic Extracts from Sargassum coreanum vol.39, pp.4, 2010, https://doi.org/10.3746/jkfn.2010.39.4.494
  7. Protective Effect of Enzymatic Extracts from Sargassum coreanum on H2O2-induced Cell Damage vol.13, pp.1, 2010, https://doi.org/10.5657/fas.2010.13.1.026
  8. The Potential of a Brown Microalga Cultivated in High Salt Medium for the Production of High-Value Compounds vol.2017, 2017, https://doi.org/10.1155/2017/4018562
  9. Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata) vol.35, pp.3, 2013, https://doi.org/10.1016/j.fsi.2013.06.026
  10. Bio and phyto-chemical effect of Amphora coffeaeformis extract against hepatic injury induced by paracetamol in rats pp.1573-4978, 2018, https://doi.org/10.1007/s11033-018-4356-8
  11. Overproduction of Bioactive Algal Chrysolaminarin by the Critical Carbon Flux Regulator Phosphoglucomutase pp.18606768, 2019, https://doi.org/10.1002/biot.201800220
  12. Microwave-Assisted Extraction of Lipids from Wet Microalgae Paste: A Quick and Efficient Method vol.120, pp.7, 2018, https://doi.org/10.1002/ejlt.201700419