DOI QR코드

DOI QR Code

Conjugation Process in Spirogyra varians Monitored with FITC-lectins(Zygnemataceae, Chlorophyta)

  • Published : 2009.03.01

Abstract

The conjugation processes of a filamentous freshwater green alga Spirogyra varians were examined using FITC-lectins. Conjugation comprised five steps: 1) aligning with adjacent filaments, 2) formation of conjugation protru-sion (papilla), 3) fusion of the protrusions, 4) formation of conjugation tube,and 5) formation of zygotes. Three lectins, ConA, RCA and UEA, showed considerable labeling during the progression of conjuation. FITC-ConA labeled the surfaces of filaments throughout the whole conjugation processes. FITC-RCA labeling was observed at the conjugation protrusions only after the papilla formation. Strong labeling continued until formationg of zygotes at the contacting area where the conjugation tube developed, but no labeling was detected on the surface of vegetative filaments. The labeling decreased gradually over time and disappeared when zygotes were formed. FITC-UEA showed similar labeling pattern with FITC-RCA except that weak labeling remained after zygote formation. Inhibition experiments using RCA, UEA which are complementary to sugars L-fucose and D-galactose, showed considerable decrease of conjugation (<32% vs. 70% in control). These results suggested that the lectin-carbohydrate recognition system might be involved in the conjugation of spirogyra varians.

Keywords

References

  1. Bischoff H.W. and Bold H.C. 1963. Phycological studies. IV. Some soil algae from enchanted rock and related algal species. The Univ. of Texas Pub. No. 6318, 95 pp
  2. Cheli F. and De vecchi L. 1989. An ultrastructural and cytochemical study on conjugatophycean cell wall. Caryologia 42: 127-138 https://doi.org/10.1080/00087114.1989.10796960
  3. Chrispeels M.J. and Raikhel N.V. 1991. Lectin, lectin genes, and their role in plant defense. Plant Cell 3: 1-9 https://doi.org/10.1105/tpc.3.1.1
  4. Fukumoto R.H.m Fujii T. and Sekimoto H. 2003. Cloning and characterization of a cDNA encoding a sexual cell divisioninducing pheromone from a unicellular green alga Closterium ehrenbergii (Chlorophyta). J. Phycol. 39:931-936 https://doi.org/10.1046/j.1529-8817.2003.03004.x
  5. Grote M. 1977. Uber die Auslosung der generativen Fortpflanzung unter kontrollierten Bedingungen bei der Grunalge Spirogyra majuscula. Z. Pflanzenphysiol 83: 95-107 https://doi.org/10.1016/S0044-328X(77)80064-0
  6. Hoek van den C., Mann D.G. and Jahns H.M. 1995. Algae: an introduction to phycology. Cambridge Univ. Press, Cambridge, 623 pp
  7. Inoue N., Sonobe S., Nagata Y. and Shimmen T. 1999. Secretion of Lectin-Binding material in differentiation of Spirogyra. Plant Cell Physiol. 40: 973-977 https://doi.org/10.1093/oxfordjournals.pcp.a029630
  8. Karlsson K.A. 1991. Glycobiology: a growing field for drug design. TIBS 12: 265-272
  9. Kato S. and Ooshima K. 1997. The factor for inhibition of sexual reproduction in Zygnema extenue Jao (Zygnematales, Chlorophyceae). Jpn. J. Phycol. 45: 1-4
  10. Kim G. H. and Fritz L. 1993a. Gamete recognition during fertilization in a red alga Antithamnion nipponicum. Protoplasma 174: 69-73 https://doi.org/10.1007/BF01404044
  11. Kim G.H. and Fritz L. 1993b. Ultrastructure and cytochemistry of early spermatangial development in Antithamnion nipponicum (Ceramiaceae, Rhodophyta). J. Phycol. 29: 797-805 https://doi.org/10.1111/j.0022-3646.1993.00797.x
  12. Kim G.H. and Fritz L. 1993c. A signal glycoprotein with a-D-mannosyl residues is involved in the wound-healing response of Antithamnion sparsum (Ceramiales, Rhodophyta). J. Phycol. 29: 85-90 https://doi.org/10.1111/j.1529-8817.1993.tb00284.x
  13. Kim G.H., Klochkova T.A., Yoon K.-S. and Lee K.P. 2006. Purification and Characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). J. Phycol. 42: 86-95 https://doi.org/10.1111/j.1529-8817.2006.00162.x
  14. Kim G.H., Lee I.K. and Fritz L. 1995. The wound-healing response of Antithamnion nipponicum and Griffithsia pacifica (Ceramiales, Rhodophyta) monitored by lectins. Phycol. Res. 43: 161-166 https://doi.org/10.1111/j.1440-1835.1995.tb00020.x
  15. Kim G.H., Lee I.K. and Fritz L. 1996. Cell-cell recognition during fertilization in a red alga, Antithamnion sparsum (Ceramiaceae, Rhodophyta). Plant Cell Physiol. 37: 621-628 https://doi.org/10.1093/oxfordjournals.pcp.a028990
  16. Kim G.H., Yoon M.C., West J.A., Klochkova T.A. and Kim S.H. 2007. Possible surface Carbohydrates involved in signaling during conjuction process in Zygnema Cruciatum monitored with FITC-lectins (zygnemataceae, Chlorophyta). Phycol. Res. 55: 135-142 https://doi.org/10.1111/j.1440-1835.2007.00456.x
  17. Kim S.H. and Kim G.H. 1999. Cell-cell recognition during fertilization in the red alga, Aglaothamnion oosumiense (Ceramiaceae, Rhodophyta). Hydrobiologia 398/399: 81-89 https://doi.org/10.1023/A:1017021730931
  18. Kim Y.H. and Kim J.H. 2002. A biology of the green algae, Spirogyra. Gaesin, Chungju, 230 pp.(in Korean)
  19. Sekimoto H., Fukumoto R-H., Dohmae N., Takio K., Fujii T. and Kamiya Y. 1998. Molecular cloning of novel sex pheromone responsible for the release of a different sex pheromone in closterium peracerosum-strigosum-littorale complex. Plant cell Physiol. 39: 1169-1175 https://doi.org/10.1093/oxfordjournals.pcp.a029317
  20. Sengbusch P.V., Mix M., Wachholz I. and Manshard E. 1982. FITC-labeled lectins and calcoflour white ST as probes for the investigation of the molecular architecture of cell surfaces. Studies on conjugatopycean species. Protoplasma 111: 38-52 https://doi.org/10.1007/BF01287645
  21. Sharon N. and Lis H. 1989. Lectins as cell recognition molecules. Science 177: 949-959 https://doi.org/10.1126/science.177.4053.949
  22. Sharon N. and Lis H. 1993. Carbohydrates in cell recognition. Sci. Am. 269: 82-89 https://doi.org/10.1038/scientificamerican0193-82
  23. Simons J., Van Beem A.P. and De Vries P.J.R. 1984. Introduction of conjugation and spore formation in species of Spirogyra, Chlorophyceae, Zygnematales. Acta Botanica Neerlandica 33: 323-334
  24. Stabenau H. and Saeftel W. 1989. Induction of conjugation in Mougeotia. Can. J. Bot. 67: 198-199 https://doi.org/10.1139/b89-282
  25. Sze P. 1998. A biology of the algae. 3rd ed. WCB/McGraw- Hill, 278 pp
  26. Wassarman P.M. 1987. The biology and chemistry of fertilization. Nature 235: 553-560
  27. Yamanshita T. and Sasaki K. 1979. Conditions for the Induction of the mating process and changes in contents of carbohydrates and nitrogen compounds during the mating process of Spirogyra. J. Fac. Sci. Hokkaido Uni. Ser. V Bot. 11: 279-287

Cited by

  1. Factors controlling induction of reproduction in algae—review: the text vol.57, pp.5, 2012, https://doi.org/10.1007/s12223-012-0147-0
  2. Induction of sexual reproduction in Spirogyra clones - does an universal trigger exist? 2013, https://doi.org/10.5507/fot.2013.007
  3. Studies on conjugation of Spirogyra using monoclonal culture vol.125, pp.3, 2012, https://doi.org/10.1007/s10265-011-0457-3
  4. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): Effects on photosynthesis and ultrastructure vol.44, 2013, https://doi.org/10.1016/j.micron.2012.08.004
  5. Comparison of biomass production from algae Spirogyra hyalina and Spirogyra peipingensis vol.8, pp.3, 2017, https://doi.org/10.1080/17597269.2016.1231954
  6. Optimization of Spirogyra Flocculation Using Polyaluminium Chloride vol.29, pp.3, 2014, https://doi.org/10.7841/ksbbj.2014.29.3.220
  7. Properties of cell surface carbohydrates in sexual reproduction of theClosterium peracerosum-strigosum-littoralecomplex (Zygnematophyceae, Charophyta) vol.60, pp.4, 2012, https://doi.org/10.1111/j.1440-1835.2012.00656.x
  8. (Zygnematophyceae, Charophyta) in Lake Baikal, East Siberia vol.57, pp.3, 2018, https://doi.org/10.2216/17-69.1