DOI QR코드

DOI QR Code

Temporal and Spatial Variation of Zooplankton Community Structure Post Construction of Saemangeum Dyke

새만금 해역에서 방조제 건설에 따른 동물플랑크톤 군집의 변화

  • 이창래 (한국해양연구원 해양생물자원연구부) ;
  • 강형구 (한국해양연구원 해양생물자원연구부) ;
  • 노재훈 (한국해양연구원 해양생물자원연구부)
  • Published : 2009.12.30

Abstract

Zooplankton community structure was investigated in the Saemangeum region in March, May, July and October of 2007 and 2008 in order to understand the potential effect of post construction of Saemangeum dyke on their temporal and spatial distribution. Mean abundance of zooplankton in the inner and outer area of the dyke, except for dinoflagellate Noctiluca scintillans, ranged from 173 to 15,830 ind.m$^{-3}$, showing higher variability in the inner area compared to the outer area. Zooplankton abundance was higher in the outer area than the inner area in 2007, and vice versa in 2008. In the inner area of the dyke, zooplankton abundance was the highest in May 2007 and March 2008. In the outer area of the dyke, abundance was the highest in October 2007 and July 2008. Brackish species such as Tortanus derjugini and Pseudodiaptomus inopinus were dominant prior to construction of the dyke, and appeared less frequently in the inner area. Marine zooplankton taxa such as juvenile hydromedusa, and calanoid copepods Acartiahongi and Paracalanus parvus s.l. dominated both areas of the dyke. In CCA analysis, zooplankton community structure in the inner and outer area was similar in March and May, but different in July and October. Temperature, salinity and COD were important environmental factors affecting zooplankton community structure. These results suggest that zooplankton community structure in the inner and outer area of Saemangeum dyke are significantly affected by whether the sluice gates are closed or open.

Keywords

References

  1. 강영실, 박주석, 이삼석, 김학균, 이필용 (1996) 진해만 수질환경과 동물플랑크톤 군집 및 요각류 특성. 한국수산확회지 29(4):415-430
  2. 김영길, 박종우, 장건강, 이원호 (2009) 새만금 방조제 완공이전 만경강 하구역 식물플랑크톤 군집의 주기적인 변동 Ocean and Polar Res 31(1):63-70 https://doi.org/10.4217/OPR.2009.31.1.063
  3. 구본주 (2008) 새만금 4호 방조제 연결 후 군산갯벌 대형저서동물 변화. Ocean and Polar Res 30(4):497-507 https://doi.org/10.4217/OPR.2008.30.4.497
  4. 국토해양부 (2009) 새만금 해양환경보존대책을 위한 조사연구-2008년도 요약보고서. 한국해양연구원 282 p
  5. 박 철, 이두별, 이창래, 양성렬, 정병관 (2008) 아산만 해역동-춘계 대증식기의 플랑크톤 변화. 한국해양학회지 「바다」13(4):308-319
  6. 서민호 (2008) 영산강 하구 댐 개폐에 의한 동물플랑크톤의군집 특성. 이학석사 학위논문, 전남대학교, 53 p
  7. 서해립, 서호영, 차성식 (1991) 만경 동진강 하구계의 동물플랑크톤의 분포와 염분. 한국해양학회지 26(3):181-192
  8. 안순모, 이재학, 우한준, 구본주, 이형곤, 유재원, 제종길 (2006) 새만금 방조제 공사로 인한 조하대환경과 저서동물 군집변화. Oceaon and Polar Res 28(4):369-383 https://doi.org/10.4217/OPR.2006.28.4.369
  9. 유정규, 정정호, 남은정, 정경미, 이순우, 명철수 (2006) 새만금 수질 환경과 동물플랑크톤 군집 분포: 방조제 건설에 따른 군집 변화. Ocean and Polar Res 28(3):305-315 https://doi.org/10.4217/OPR.2006.28.3.305
  10. 이희준, 조형래, 김민지 (2006) 새만금 방조제 축조에 따른 지형 및 입도특성의 변화. Ocean and Polar Res 28(3):293-303 https://doi.org/10.4217/OPR.2006.28.3.293
  11. 이희준, 김민지, 김태경 (2008) 고군산군도 내측해역의 현생퇴적환경. Ocean and Polar Res 30(4):519-536 https://doi.org/10.4217/OPR.2008.30.4.519
  12. 임경훈 (2007) 새만금 방조제 건설에 따른 갯벌 저서환경과 대형저서동물 군집구조의 변동. 이학박사 학위논문, 전남대학교, 440 p
  13. 정익교, 강영작, 권오섭, 서정관 (2000) 낙동강 하구 해역 식물플랑크톤의 군집동태. 한국조류학회지 15(2):99-110
  14. 해양수산부 (2007) 새만금 해양환경보존대책을 위한 조사연구-해양수질환경 모니터링분야. 한국해양연구원, BSPM 37901-1842-4, 321 p
  15. 해양수산부 (2008) 새만금 해양환경보존대책을 위한 조사연구-해양수질환경 모니터링분야. 한국해양연구원, BSPM 43701-1956-4, 250 p
  16. Attrill MJ (2002) A testable linear model for diversity trends in estuaries. J Animal Ecol 71:262-269 https://doi.org/10.1046/j.1365-2656.2002.00593.x
  17. Bakker C (1994) Zooplankton species composition in the Oosterschelde (SW Netherlands) before, during and after the construction of a storm-surge barrier. Hydrobiologia 282/283:117-126 https://doi.org/10.1007/BF00024625
  18. Bakker C, Rijswijk P (1994) Zooplankton biomass in the Oosterschelde (SW Netherlands) before, during and after the construction of a storm-surge barrier. Hydrobiologia 282/283:127-143 https://doi.org/10.1007/BF00024626
  19. Calliari D, Andersen Borg MC, Thor P, Gorokhova E, Tiselius P (2008) Instantaneous salinity reductions affect the survival and feeding rates of the co-occurring copepods Acartia tonsa Dana and A. clausi Giesbrecht differently. J. Exp Mar Biol Ecol 362(1):18-25 https://doi.org/10.1016/j.jembe.2008.05.005
  20. Cervetto G, Gaudy R, Pagano M (1999) Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). J Exp Mar Biol Ecol 239:33-45 https://doi.org/10.1016/S0022-0981(99)00023-4
  21. Kimmerer WJ (2002) Distribution patterns of zooplankton in Tomales Bay, California. Estuaries 16(2):264-272 https://doi.org/10.2307/1352499
  22. Laprise R, Dodson JJ (1994) Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Mar Ecol Prog Ser 107:67-81 https://doi.org/10.3354/meps107067
  23. Lee CR, Park C (2002) Long-term variation of zooplankton composition and abundance in Asan Bay, Korea: is it influence of dyke construction? The Yellow Sea 8(1):9-18
  24. Lee S, Lie HJ, Song KM, Cho CH, Lim EP (2008) Tidal Modification and Its Effect on Sluice-Gate Outflow after Completion of the Saemangeum Dike, South Korea. J Oceanogr Soc Japan 64:763-776 https://doi.org/10.1007/s10872-008-0064-7
  25. Marques SC, Azeiteiro UM, Marques JC, Neto JM, Pardal M (2006) Zooplankton and ichthyoplankton communities in a temperate estuary: spatial and temporal patterns. J Plankton Res 28(3):297-312 https://doi.org/10.1093/plankt/fbi126
  26. Nielsen TG, Andersen CM (2002) Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Mar Biol 141(4):707-724 https://doi.org/10.1007/s00227-002-0868-8
  27. Noh JH, Choi DH, Lee S, Kim ES (2008) Impact assessment of phytoplankton distribution after the Saemangeum dyke Enclosure in Korea. In: 2008 Joint symposium on tidal flat issues, University of Nagasaki, Japan, 27-28 November 2008
  28. Park C, Lee PG, Lee CR (1998) Seasonal variation in abundance, species occurrence and species diversity of zooplankton in Asan Bay, the Yellow Sea over the last eight years. The Yellow Sea 4:40-48
  29. Park SC, Yoo DG (1997) Bedform distribution and sand transport trend on a subtidal ridge in a microtidal bay, West coast of Korea. J Kor Soc Oceanogr 32(4):181-190
  30. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press 173 p
  31. Roman MR, Holliday DV, Sanford LP (2001) Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum. Mar Ecol Prog Ser 213:215-227 https://doi.org/10.3354/meps213215
  32. Soetaert K, Herman PMJ (1994) One foot in the grave: zooplankton drift into the Westerschelde estuary (The netherlands). J Exp Mar Biol Ecol 105:19-29
  33. Tang KW, Freund CS, Schweitzer CL (2006) Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes. Estuar Coast Shelf Sci 68:499-508 https://doi.org/10.1016/j.ecss.2006.02.021
  34. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate gradient analysis. Ecology 67:1167-1179 https://doi.org/10.2307/1938672
  35. ter Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca NY, USA), 500 p
  36. Ueda H (1986) Taxanomic reexamination and geographic distribution of copepods known as Acartia clausi in Japanese coastal and inlet waters. J Oceanogr Soc Japan 42:134-138 https://doi.org/10.1007/BF02109100
  37. Uriarte I, Villate F (2005) Differences in the abundance and distribution of copepods in two estuaries of the Basque coast (Bay of Biscay) in relation to pollution. J Plankton Res 27(9):863-874 https://doi.org/10.1093/plankt/fbi059
  38. Uriarte I, Villate F (2006) Spatial variations in size, weight and condition factor of the females of Acartia clausi (Copepod: Calanoida) along a salinity gradient in two contrasting estuaries of the Basque coast (Bay of Biscay). Hydrobiologia 571:329-339 https://doi.org/10.1007/s10750-006-0258-1
  39. Zhang J (1995) Geochemistry of trace metals from Chinese river/estuary system: An overview. Estuar Coast Shelf Sci 41:631-658 https://doi.org/10.1006/ecss.1995.0082

Cited by

  1. Geographical distribution of red and green Noctiluca scintillans vol.29, pp.4, 2011, https://doi.org/10.1007/s00343-011-0510-z
  2. The Saemangeum tidal flat: Long-term environmental and ecological changes in marine benthic flora and fauna in relation to the embankment vol.102, 2014, https://doi.org/10.1016/j.ocecoaman.2014.07.020
  3. A Study on Meiofauna Community in the Subtidal Sediment outside of the Saemangeum Seadike in the West Coast of Korea vol.36, pp.3, 2014, https://doi.org/10.4217/OPR.2014.36.3.209
  4. Bayesian structural equation modeling for coastal management: The case of the Saemangeum coast of Korea for water quality improvements vol.136, 2017, https://doi.org/10.1016/j.ocecoaman.2016.10.014
  5. Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea vol.43, pp.6, 2010, https://doi.org/10.5657/kfas.2010.43.6.723
  6. Egg production rate of the copepod Calanus sinicus off the Korean coast of the Yellow Sea during spring vol.46, pp.3, 2011, https://doi.org/10.1007/s12601-011-0012-0