DOI QR코드

DOI QR Code

Analysis of Total Bacteria, Enteric Members of γ-proteobacteria and Microbial Communities in Seawater as Indirect Indicators for Quantifying Biofouling

  • Lee, Jin-Wook (Bio-Environmental Engineering Lab. (BEEL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Sung-Min (Bio-Environmental Engineering Lab. (BEEL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Jung, Ji-Yeon (Bio-Environmental Engineering Lab. (BEEL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Oh, Byung-Soo (Center for Seawater Desalination Plant, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, In S. (Center for Seawater Desalination Plant, Gwangju Institute of Science and Technology (GIST)) ;
  • Hong, Soon-Kang (Department of Fire Service Administration, Chodang University)
  • Published : 2009.03.31

Abstract

In this study, total bacteria, enteric members of the $\gamma$-proteobacteria, and microbial communities in seawater were analyzed as indirect indicators for quantifying biofouling. Biomass in seawater can significantly affect feed water pretreatment and membrane biofouling of reverse osmosis desalination processes. The purpose of this paper is to investigate microbiological quantity and quality of seawater at the potential intake of a desalination plant. For this analysis, the total direct cell count (TDC) using 4'-6-diamidino-2-phenylindole (DAPI)-staining and DNA-based real-time PCR were used to quantify the total bacteria and relative content of enteric members of $\gamma$-proteobacteria in seawater, respectively. In addition, microbial communities were examined using 16S rRNA gene cloning and bacterial isolation to identify the most abundant bacteria for a further biofouling study. The experimental results of this study identified about $10^6$ cells/mL of (total) bacteria, $10^5$ 16S rRNA gene copies/mL of enteric $\gamma$-proteobacteria, and the presence of more than 20 groups of bacteria.

Keywords

References

  1. Saeed, M. O., Jamaluddin, A. T., Tisan, I. A., Lawrence, D. A., Al-Amri, M. M., and Chida, K., “Biofouling in a seawater reverse osmosis plant on the Red Sea coast, Saudi Arabia,” Desalination, 128(2), 177-190 (2000) https://doi.org/10.1016/S0011-9164(00)00032-1
  2. Vrouwenvelder, J. S. and van der Kooij, D., “Diagnosis, prediction and prevention of biofouling of NF and RO membranes,” Desalination, 139(1-3), 65-71 (2001) https://doi.org/10.1016/S0011-9164(01)00295-8
  3. Ivnitsky, H., Katz, I., Minz, D., Shimoni, E., Chen, Y., Tarchitzky, J., Semiat, R., and Dosoretz, C. G., “Characterization of membrane biofouling in nanofiltration processes of wastewater treatment,” Desalination, 185(1-3), 255-268 (2005) https://doi.org/10.1016/j.desal.2005.03.081
  4. Al-Ahmad, M., Abdul Aleem, F. A., Mutiri, A., and Ubaisy, A., “Biofouling in RO membrane systems Part 1: Fundamentals and control,” Desalination, 132(1-3), 173-179 (2000) https://doi.org/10.1016/S0011-9164(00)00146-6
  5. Abdul Azis, P. K., Al-Tisan, I., and Sasikumar, N., “Biofouling potential and environmental factors of seawater at a desalination plant intake,” Desalination, 135(1-3), 69-82 (2001) https://doi.org/10.1016/S0011-9164(01)00140-0
  6. Jang, N. J., Yeo, Y. H., Hwang, M. H., Vigneswaran, S., Cho, J. W., and Kim, I. S., “The effect of air bubbles from dissolved gases on the membrane fouling in the hollow fiber submerged membrane bio-reactor (SMBR),” Environ. Eng. Res., 11(2), 91-98 (2006) https://doi.org/10.4491/eer.2006.11.2.091
  7. Kim, I. S. and Jang, N., “The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR),” Water Res., 40(14), 2756-2764 (2006) https://doi.org/10.1016/j.watres.2006.03.036
  8. Shahalam, A. M., Al-Harthy, A., and Al-Zawhry, A., “Feed water treatment in RO systems: unit processes in the Middle East,” Desalination, 150, 235-245 (2002) https://doi.org/10.1016/S0011-9164(02)00979-7
  9. Alawadhi, A. A., “Pretreatment plant design-Key to a successful reverse osmosis desalination plant,” Desalination, 110, 1-10 (1997) https://doi.org/10.1016/S0011-9164(97)00079-9
  10. Azis, P. K. A., Al-Tisan, I., Al-Daili, M., Green, T. N., Dalvi, A. G. I., and Javeed, M. A., “Effects on environment on source water for desalination plants on the eastern coast of Saudi Arabia,” Desalination, 132, 29-40 (2000) https://doi.org/10.1016/S0011-9164(00)00132-6
  11. Veza, J. M., Oritz, M., Sadhwani, J. J., Gonzalez, J. E., and Santana, F. J., “Measurement of biofouing in seawater: some practical tests,” Desalination, 220, 326-334 (2008) https://doi.org/10.1016/j.desal.2007.01.037
  12. Schneider, R. P., Ferreira, L. M., Binder, P., Bejarano, E. M., Goes, K. P., Slongo, E., Machado, C. R., and Rosa, G. M. Z., “Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling,” J. Membr. Sci., 266(1-2), 18-29 (2005) https://doi.org/10.1016/j.memsci.2005.05.006
  13. Jang, N., Shon, H., Ren, X., Vigneswaran, S., and Kim, I. S., “Characteristics of bio-foulants in the membrane bioreactor,” Desalination, 200(1-3), 201-202 (2006) https://doi.org/10.1016/j.desal.2006.03.295
  14. Pommepuy, M., Butin, M., Derrien, A., Gourmelon, M., Colwell, R. R., and Cormier, M., “Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight,” Appl. Environ. Microbiol., 62(12), 4621-4626 (1996)
  15. Cottrell, M. T. and Kirchman, D. L., “Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization,” Appl. Environ. Microbiol., 66(12), 5116-5122 (2000) https://doi.org/10.1128/AEM.66.12.5116-5122.2000
  16. Frias-Lopez, J., Zerkle, A. L., Bonheyo, G. T., and Fouke, B. W., “Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces,” Appl. Environ. Microbiol., 68(5), 2214-2228 (2002) https://doi.org/10.1128/AEM.68.5.2214-2228.2002
  17. Lyons, S. R., Griffen, A. L., and Leys, E. J., “Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria,” J. Clin. Microbiol., 38(6), 2362-2365 (2000)
  18. Bach, H. J., Tomanova, J., Schloter, M., and Munch, J. C., “Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification,” J. Microbiol. Methods, 49(3), 235-245 (2002) https://doi.org/10.1016/S0167-7012(01)00370-0
  19. Labrenz, M., Brettar, I., Christen, R., Flavier, S., Botel, J., and Höfle, M. G., “Development and application of a realtime PCR approach for quantification of uncultured bacteria bacteria in the central Baltic Sea,” Appl. Environ. Microbiol., 70(8), 4971-4979 (2004) https://doi.org/10.1128/AEM.70.8.4971-4979.2004
  20. Ausubel, F. M., Brent, R., E., K. R., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., Short protocols in molecular biology, 2nd ed., John Wiley & Sons, New York (1992)
  21. Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J., “16S ribosomal DNA amplification for phylogenetic study,” J. Bacteriol., 173(2), 697-703 (1991)
  22. Harmsen, D., Dostal, S., Roth, A., Niemann, S., Rothganger, J., Sammeth, M., Albert, J., Frosch, M., and Richter, E., “RIDOM: Comprehensive and public sequence database for identification of Mycobacterium species,” BMC Infect. Dis., 3, 10 (2003) https://doi.org/10.1186/1471-2334-3-10
  23. Watt, S., Aesch, B., Lanotte, P., Tranquart, F., and Quentin, R., “Viral and bacterial DNA in carotid atherosclerotic lesions,” Eur. J. Clin. Microbiol. Infect. Dis., 22(2), 99-105 (2003) https://doi.org/10.1007/s10096-002-0867-1
  24. Jochem, F. J., “Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: analysis by epifluorescence microscopy and flow cytometry,” Aquatic Microbial Ecology, 5, 9-194 (2001)
  25. Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V., and Polz, M. F., “Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons,” J. Bacteriol., 186(9), 2629-2635 (2004) https://doi.org/10.1128/JB.186.9.2629-2635.2004
  26. He, J. and Jiang, S., “Quantification of Enterococci and Human Adenoviruses in Environmental Samples by Realtime PCR”, Applied and Environmental Microbiology, 71(5), 2250-2255 (2005). https://doi.org/10.1128/AEM.71.5.2250-2255.2005

Cited by

  1. Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain vol.15, pp.3, 2010, https://doi.org/10.4491/eer.2010.15.3.141
  2. Evaluation of a seawater electrolysis process considering formation of free chlorine and perchlorate vol.18, pp.1-3, 2010, https://doi.org/10.5004/dwt.2010.1780
  3. growth vol.305, pp.10, 2013, https://doi.org/10.1152/ajpgi.00184.2013
  4. infection: inhibition of NHE3 and microbiota profile vol.308, pp.6, 2015, https://doi.org/10.1152/ajpgi.00090.2014
  5. infection: altered mucus production and composition vol.308, pp.6, 2015, https://doi.org/10.1152/ajpgi.00091.2014
  6. Flow Cytometric Detection of Bacillus spoOA Gene in Biofilm Using Quantum Dot Labeling vol.82, pp.7, 2009, https://doi.org/10.1021/ac902807n