DOI QR코드

DOI QR Code

Fabrication of ZrB2-based Composites for Ultra-high Temperature Materials

초고온 소재용 ZrB2계 복합소재의 제조

  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Chae, Jung-Min (Department of Advanced Materials Engineering, Korea University) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Advanced Materials Engineering, Korea University)
  • 김성원 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 채정민 (고려대학교 신소재공학부) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 남산 (고려대학교 신소재공학부)
  • Published : 2009.12.28

Abstract

$ZrB_2$-based composites are candidate materials for ultra-high temperature materials (UHTMs). $ZrB_2$ has become an indispensable ingredient in UHTMs, due to its high melting temperature, relatively low density, and excellent resistance to thermal shock or oxidation. $ZrB_2$ powders are usually synthesized by solid state reactions such as carbothermal, borothermal, or combined carbothermal reaction. SiC is added to this system in order to enhance the oxidation resistance of $ZrB_2$. In this study, $ZrB_2$?based composites were successfully synthesized and densified through two different processing paths. $ZrB_2$ or $ZrB_2$ 25 vol.%SiC was fully synthesized from oxide starting materials with reducing agents after heat treatment at 1400$^{\circ}C$. Besides, $ZrB_2$?20 vol.%SiC was fully densified with $B_4C$ as a sintering additive after hot pressing at 1900$^{\circ}C$. The synthesis mechanism and the effect of sintering additives on densification of $ZrB_2$ ?SiC composites were also discussed.

Keywords

References

  1. N. P. Bansal (Ed.): Handbook of Ceramic Composites, N. P. Bansal (Ed.), Kluwer Academic Publishers, Boston/Dordrecht/London (2005) 197
  2. Workshop report: NSF-AFOSR Joint Workshop on Future Ultra-High Temperature Materials (2004) 1
  3. W. G. Fahrenholtz and G. E. Hilmas: J. Am. Ceram. Soc., 90 (2007) 1347 https://doi.org/10.1111/j.1551-2916.2007.01583.x
  4. A. L. Chamberlain, W. G. Fahrenholtz and G. E. Hilmas: J. Am. Ceram. Soc., 87 (2004) 1170 https://doi.org/10.1111/j.1551-2916.2004.01170.x
  5. S. S. Hwang, A. L. Vasiliev and N. P. Padture: Mater. Sci. Eng. A, 464 (2007) 2077 https://doi.org/10.1016/j.msea.2007.03.002
  6. A. Bellosi, F. Monteverde and D. Sciti: Int. J. Appl. Ceram. Technol., 3 (2006) 32 https://doi.org/10.1111/j.1744-7402.2006.02060.x
  7. S. Q. Guo, Y. Kagawa, T. Nishimura and H. Tanaka: Ceram. Int., 34 (2008) 1811 https://doi.org/10.1016/j.ceramint.2007.06.010
  8. M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman and S. Johnson: J. Mater. Sci., 39 (2004) 5925 https://doi.org/10.1023/B:JMSC.0000041689.90456.af
  9. E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort and F. Guitierrez-Mora: J. Mater. Sci., 39 (2004) 5939 https://doi.org/10.1023/B:JMSC.0000041690.06117.34
  10. W. G. Fahrenholtz, G. E. Hilmas, S. C. Zhang and S. Zhu: J. Am. Ceram. Soc., 91 (2008) 1398 https://doi.org/10.1111/j.1551-2916.2007.02169.x
  11. Y. Xie, T. H. Sanders Jr. and R. F. Speyerw: J. Am. Ceram. Soc., 91 (2008) 1469 https://doi.org/10.1111/j.1551-2916.2008.02288.x
  12. A. Sayir: J. Mater. Sci., 39 (2004) 5995 https://doi.org/10.1023/B:JMSC.0000041696.64055.8c
  13. F. Peng and R. F. Speyer: J. Am. Ceram. Soc., 91 (2008) 1489 https://doi.org/10.1111/j.1551-2916.2008.02368.x
  14. R. D. Lohr and M. Steen (Ed.): Ultra High Temperature Mechanical Testing, R. D. Lohr and M. Steen (Ed.), Woodhead Publishing Ltd., Cambridge England (1995) 9
  15. Y. Zhao, L.-J. Zhang, W. Jiang and L.-D. Chen: J. Am. Ceram. Soc., 90 (2007) 4040
  16. R. Licheri, R. Orru, C. Musa, A. M. Locci and G. Cao: J. Mater. Sci., 43 (2008) 6406 https://doi.org/10.1007/s10853-008-2630-1
  17. S.-J. L. Kang: Sintering; Densification, Grain Growth & Microstructure, Elsevier Butterworth-Heinemann, Oxford (2005) 6
  18. S.-Q. Guo: J. Euro. Ceram. Soc., 29 (2009) 995 https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
  19. M. N. Rahaman: Ceramic Processing and Sintering 2nd Ed., MarcelDekker, Ins., New York (2003) 428

Cited by

  1. -SiC Composite Ceramics vol.18, pp.6, 2011, https://doi.org/10.4150/KPMI.2011.18.6.562