DOI QR코드

DOI QR Code

Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route

Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동

  • Lim, Joo-Hyun (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • Published : 2009.12.28

Abstract

Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

Keywords

References

  1. E. Y. Ivanov, C. Suryanarayana and B. D. Bryskin: Mater. Sci. Eng. A, A251 (1998) 255 https://doi.org/10.1016/S0921-5093(98)00620-0
  2. R. M. German and V. Ham: Int. J. Powder Metall., 12 (1976) 115
  3. N. M. Hwang, Y. J. Kim and D. Y. Yoon: Scripta Mater., 42 (2000) 421 https://doi.org/10.1016/S1359-6462(99)00344-9
  4. Y. Boonyongmaneerat: J. Mater. Proc. Tech., 209 (2009) 4084 https://doi.org/10.1016/j.jmatprotec.2008.09.026
  5. M. B. Dickerson, P. J. Wurm, J. R. Schorr, W. P. Hoffman, P. G. Wapner and K. H. Sandhage: J. Mater. Sci., 39 (2004) 6005 https://doi.org/10.1023/B:JMSC.0000041697.67626.46
  6. E. P. Kim: J. Korean Powder Metall. Inst., 5 (1998) 42
  7. S. Shi and J. Hwang: J. Min. & Mater. Charac. & Eng., 2 (2003) 145
  8. B. Riccardi, R. Montanari, M. Casadei, G. Costanza, G. Filacchioni and A. Moriani: J. Nuclear Mater., 352 (2006) 29 https://doi.org/10.1016/j.jnucmat.2006.02.069
  9. R. Hickman, T. Mckechnie and S. O'Dell: 39th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, Alabama (2003) 5236-1
  10. K. E. Rea, V. Viswanathan, A. Kruize, J. Th. M. De Hosson, S. O'Dell, T. Mckechnie, S. Rajagopalan, R. Vaidyanathan and S. Seal: Mater. Sci. Eng, A, A477 (2008) 350 https://doi.org/10.1016/j.msea.2007.05.063
  11. K. H. Baik: Mater. Trans., 47 (2006) 1198 https://doi.org/10.2320/matertrans.47.1198
  12. K. H. Baik, P. S. Grant and B. Cantor: Acta Mater., 52 (2004) 199 https://doi.org/10.1016/j.actamat.2003.09.006
  13. L. Pawlowski: The Sience and Engineering of Thermal Spray Coatings, John Wiley & Sons (1995)
  14. I. Barin: Thermochemical Data of Pure Substances, 3rd Edition, VCH, Weinheim (1995)