DOI QR코드

DOI QR Code

The assessment of the relative contribution of the shape of instantaneous unit hydrograph with heterogeneity of drainage path

배수경로 이질성에 의한 순간단위도 형상의 상대적 기여도 평가

  • 최용준 (충남대학교 대학원 토목공학과) ;
  • 김주철 (한국수자원공사 수자원연구원) ;
  • 김재한 (충남대학교 토목공학과)
  • Published : 2009.11.30

Abstract

The relative contribution of between hillslope-flow and stream-flow by heterogeneity of drainage path are quantitatively assessed in the present study with GIUH model based on grid of GIS. Application watersheds are selected Pyeongchang, Bocheong and Wi river basin of IHP in Korea. The mean and variance of hillslope and stream length are estimated and analyzed in each watershed. And coupling with observation storm events, estimate hillslope and stream characteristic velocity which dynamic parameters of GIUH model. The mean and variance of distribution of travel time (i.e. IUH) calculate using estimated pass lengths and characteristic velocities. And the relative contributions are assessed by heterogeneity of drainage path. As a result, the effect of the variance that determine shape of IUH dominate with hillslope's effect in the small watershed area (within 500 $km^2$). Thus, GIUH in the small watershed area must consider hillslope-flow.

본 연구에서는 지리정보체계(GIS)의 격자 기반 GIUH 모형을 이용하여 배수경로의 이질성에 따른 지표면 유동과 하천망 유동의 상대적 기여도를 정량적으로 평가하였다. 대상유역은 국제수문개발계획(IHP)의 평창강, 보청천 및 위천 유역의 17개 소유역을 선정하였다. 각 대상유역에 대해 지표면과 하천의 배수경로길이에 대한 평균과 분산을 추정-분석하였다. 또한 관측 수문사상과 결합하여 GIUH 모형의 동적매개변수인 특성 유속을 지표면과 하천에 대해 산정하였다. 산정된 경로길이와 특성유속을 통해 유하시간의 분포, 즉 순간단위도의 평균 및 분산을 추정하여 배수경로의 이질성에 따른 각각의 기여도를 평가 하였다. 연구 결과 순간단위도의 형상을 결정하는 분산의 영향은 중소규모 유역(500 $km^2$이내)에서 지표면의 영향이 지배적이었다. 따라서 소규모 유역에서 GIUH 적용 시 지표면의 유동을 중요하게 고려해야 할 것이다.

Keywords

References

  1. 김주철, 윤여진, 김재한 (2005). 'Nash 모형의 지체시간을 이용한 GIUH 유도.' 한국수자원학회논문집, 제38권, 제10호, pp. 801-810 https://doi.org/10.3741/JKWRA.2005.38.10.801
  2. 김주철, 윤여진, 김재한 (2006). '수문학적 접근법에 의한 유역응답내 지표면유동의 기여도 평가.' 한국수자원학회논문집, 제39권, 제7호, pp. 553-562 https://doi.org/10.3741/JKWRA.2006.39.7.553
  3. 정성원, 김동필, 문장원, 이창용, 이대희 (2000). '시험유역의 운영 및 수문특성 조사.연구-합성단위도 개발을 중심으로.' 한국건설기술연구원
  4. Botter, G. and Rinaldo, A.(2003). ' Scale effect on geomorphologic and kinematic dispersion.' Water Resources Research, Vol. 39, No. 10, 1286. DOI: 10.1029/2003WR002154
  5. Di Lazzaro, M. (2008). ' Correlation between channel and hillslope lengths and its effects on the hydrologic response.' Journal of Hydrology, Vol. 362, pp. 260-273 https://doi.org/10.1016/j.jhydrol.2008.08.022
  6. Di Lazzaro, M. (2009). ' Regional analysis of storm hydrographs in the rescaled width function framework.' Journal of Hydrology, doi:10.1016/ j.jhydrol.2009.04.027
  7. D'odorico, P., and Rigon, R. (2003). ' Hillslope and channel contributions to the hydrologic response.' Water Resources Research, Vol. 39, NO. 5, 1113. doi:10.1029/2002WR001708
  8. Dooge J.C.I. (1973). ' Linear theory of hydrologic system' Tech. Bull. 1468. Agriculture Research Service, U.S. Department of Agriculture, Washington, D.C
  9. Gupta, V.K., Waymire, E. and Wang, C.T. (1980). ' A representation instantaneous unit hydrograph based on path types.' Water Resources Research, Vol. 6, No. 5, pp. 855-862
  10. Lee, K.T. and Chang, C. (2005). ' Incorporating subsurface-flow mechanism into geomorphology based IUH modeling.' Journal of Hydrology, Vol. 311, pp. 91-105 https://doi.org/10.1016/j.jhydrol.2005.01.008
  11. Montgomery, D.R. and Foufoula-Georgiou, E. (1993). ' Channel network source representation using digital elevation models.' Water Resources Research, Vol. 29, No. 12, pp. 3925-3934 https://doi.org/10.1029/93WR02463
  12. Nash, J.E. (1959). ' Systematic determination of unit hydrograph parameter.' Journal of Geophysical Research, Vol. 64, No. 1, pp. 111-115 https://doi.org/10.1029/JZ064i001p00111
  13. O'Callaghan, J.F. and Mark, D.M. (1984). ' The extraction of drainage networks from digital elevation data.' Computer Vision, Graphics and Image Processing, Vol. 28, pp. 324-344
  14. Rinaldo, A., Rigon, R. and Marani, M. (1991). ' Geomorphological dispersion.' Water Resources Research, Vol. 27, No. 4, pp. 513-525 https://doi.org/10.1029/90WR02501
  15. Rinaldo, A., Vogel, G.K., Rigon, R. and Rodríguez-Iturbe, I. (1995). ' Can one gauge the shape of basin.' Water Resources Research, Vol. 31, No. 4, pp. 1119-1127 https://doi.org/10.1029/94WR03290
  16. Rinaldo, A., Botter, G., Bertuzzo, E., Uccelli, A., Settin, T. and Marani, M. (2006). ' Transport at basin scales: 1. Theoretical framework.' Hydrology and Earth System Sciences, Vol. 10, pp. 19-29 https://doi.org/10.5194/hess-10-19-2006
  17. Robinson, J.S., Sivaparan, M., and Snell, J.D. (1995). ' On the relative roles of hillslope processes, channel routing, and network geomorphology in the hydrologic response of natural catchments.' Water Resources Research, Vol. 31, No. 12, pp. 3089- 3101 https://doi.org/10.1029/95WR01948
  18. Rodrigueze-Iturbe, I. and Valdes, J.B. (1979). ' The geomorphologic structure of hydrologic response.' Water Resources Research, Vol. 15, No. 6, pp. 1409-1420 https://doi.org/10.1029/WR015i006p01409
  19. Saco, P.M. and Kumer, P. (2002). ' Kinematic dispersion in stream networks -1. Coupling hydraulics and network geometry.' Water Resources Research, Vol. 38, No. 11, pp. 26-1-26-14 https://doi.org/10.1029/2001WR000695
  20. Sherman, L.K. (1932). ' Stream flow from rainfall by the unit graph method.' Engineering News Record, Vol. 108, pp. 501-505
  21. Singh, V.P. (1988). ' Hydrologic system - Rainfall- runoff modeling Volume.' Prentice hall, Eaglewood cliffs, New Jersey
  22. Tarboton, D.G., Bras, R.L. and Rodriguez-Iturbe, I. (1992). ' A physical basis for drainage density.' Geomorphology, Vol. 5, pp. 59-76 https://doi.org/10.1016/0169-555X(92)90058-V
  23. van der Tak, L.D., and Bras, R.L. (1990). ' Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph.' Water Resources Research, Vol. 26, No. 10, pp. 2393-2400 https://doi.org/10.1029/WR026i010p02393

Cited by

  1. Key Parameters and Input Variables for the Reduction of Uncertainty using Modified Pedigree Matrix vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.329
  2. Identification of Nash Model Parameters Based on Heterogeneity of Drainage Paths vol.43, pp.1, 2010, https://doi.org/10.3741/JKWRA.2010.43.1.1