DOI QR코드

DOI QR Code

Effect of Grain Refinement on Tensile Properties of Ti-15-3 Alloy

Ti-15-3합금의 결정립 미세화가 인장 특성에 미치는 영향

  • Lee, Chan-Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Young-Min (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
  • 이찬영 (연세대학교 공과대학 신소재공학과) ;
  • 박용민 (연세대학교 공과대학 신소재공학과) ;
  • 이영국 (연세대학교 공과대학 신소재공학과)
  • Published : 2009.11.27

Abstract

Titanium alloys have been attractive due to a high ratio of strength to weight as well as good corrosion resistance. However, strengthening causes a decrease in ductility in Ti alloys, as is usual in other alloys. For enhanced strength without ductility reduction, grain refinement and tensile properties were investigated as functions of thickness reduction of cold rolling and annealing condition in Ti-15V-3Cr-3Sn-3Al alloy with a ${\beta}$ single phase. The average grain size of the specimen, which was cold-rolled by 90% and annealed at 700$^{\circ}C$ for 5 min, was decreased to approximately 19 ${\mu}m$. The grain refinement of 63 μm to 19 ${\mu}m$ increased yield stress by 90 MPa without a significant decrease in total elongation. The Ti-15-3 alloy exhibited very low work hardening during tensile test at a crosshead speed of 2 mm/min. This result was discussed based on dynamic recovery associated with dislocation annihilation in grain boundaries.

Keywords

References

  1. M. E. Rosenblum, A. Shames and W. B. Treppel, Beta Titanium Alloys in the 1980's, ed., R. R. Boyer and H. W. Rosenberg, TMS-AIME, 307 (1983)
  2. J.W. Lee, B.H. Lee, K.H. Lee and Y.D. Kim, Korean Journal of Materials Research 14, 13 (2004) https://doi.org/10.3740/MRSK.2004.14.1.013
  3. M. Okada, ISIJ Int. 31, 834 (1991) https://doi.org/10.2355/isijinternational.31.834
  4. T. Furuhara, T. Maki and T. Makino, J. Mater. Pro. Tech. 117, 318 (2001) https://doi.org/10.1016/S0924-0136(01)00790-7
  5. T. Furuhara, Met. Mater. Int. 6, 221 (2000) https://doi.org/10.1007/BF03028215
  6. C. Ouchi, H. Suenaga and Y. Kohsaka, in Proceedings Sixth World Conference on Titanium(Paris, France, 1989), ed., P. Lacombe et al., Les Editions de Physique, Paris, p.819
  7. H. Gleiter, Prog. Mater. Sci. 33, 223 (1985) https://doi.org/10.1016/0079-6425(89)90001-7
  8. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2005) https://doi.org/10.1016/S0079-6425(99)00007-9
  9. H. Gleiter, Acta Mater. 48, 1 (2000) https://doi.org/10.1016/S1359-6454(99)00285-2
  10. R. W. Armstrong, Metall. Trans 1, 1169 (1970) https://doi.org/10.1007/BF02900227
  11. S. J. Kim, B. H. Choe and M. Hagiwara, J. Kor. Inst. Met. Mater. 35, 880 (1997)
  12. Y. Wang, M. Chen, F. Zhou and E. Ma, Nature 419, 912 (2002) https://doi.org/10.1038/nature01133
  13. K. T. Park, S. Y. Han, D. H. Shin, Y. K. Lee, K. J. Lee and K. S. Lee, ISIJ Inter. 44, 1057 (2004) https://doi.org/10.2355/isijinternational.44.1057
  14. K. T. Park and D. H. Shin, Metall. Mater. Trans. A, 33A, 705 (2002) https://doi.org/10.1007/s11661-002-0134-1
  15. R. Z. Valiev, Mater. Sci. Eng. A234-236, 59 (1997) https://doi.org/10.1016/S0921-5093(97)00183-4
  16. D. G. Robertson and H. B. McShane, Mater. Sci. Tech. 13, 575 (1997) https://doi.org/10.1179/mst.1997.13.7.575
  17. R. Z. Valiev, E. V. kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov and B. Baudelet, Acta Metall. Mater. 42, 2467 (1993) https://doi.org/10.1016/0956-7151(94)90326-3
  18. J. W. Christian, Scripta Metall. 4, 803 (1970) https://doi.org/10.1016/0036-9748(70)90065-7
  19. M. Wang and A. Shan, J. Alloys Compd., 455, 10 (2008) https://doi.org/10.1016/j.jallcom.2007.01.166