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ON VOLUMES OF PARALLEL 2n-HEDRON
IN A LORENTZ VECTOR SPACE

Seongil Park, Byung Hak Kim, Jin Hyuk Choi, and Young Ok Lee

Abstract. In this paper we formulated the volume of parallel 2n-hedron
spanned by timelike linearly independent vectors in the Lorentz vector
space.

1. Introduction

The Lorentzian geometry is very deeply related to the study of general rel-
ativity and the theory of cosmology. And a good understanding of global
Lorentzian geometry is essential for the development of singularity theory. Re-
cent results and related works in the Lorentzian geometry can be found in the
book [1] written by J. K. Beem, P. E. Ehrlich, and K. L. Easley.

The inner product or distance function in the Lorentzian geometry has many
similarities with the counterparts in the Riemannian geometry but also has
many differences with them. It is well known that the length of vectors, area of
parallelogram spanned by two linearly independent vectors and the volume of
parallel 2n-hedron spanned by n linearly independent vectors in the Euclidean
space are represented by the norms or the determinants. In Euclidean space,
the volume V n(u1, u2, . . . , un) of parallel 2n-hedron (n ≥ 3) spanned by linearly
independent vectors u1, u2, . . . , un is given by ([2])

{V n(u1, u2, . . . , un)}2 =

∣∣∣∣∣∣∣∣∣

〈u1, u1〉 〈u1, u2〉 · · · 〈u1, un〉
〈u2, u1〉 〈u2, u2〉 · · · 〈u2, un〉

...
...

. . .
...

〈un, u1〉 〈un, u2〉 · · · 〈un, un〉

∣∣∣∣∣∣∣∣∣
where 〈, 〉 is an Euclidean inner product and |A| is the determinant of A.

Let V 1(u1) be a volume(length) of linearly independent vector u1 and let
V 2(u1, u2) be a volume(area) of the plane spanned by linearly independent
vectors u1 and u2. Then we can easily see that {V 1(u1)}2 = 〈u1, u1〉 = ‖u1‖2,
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{V 2(u1, u2)}2 = ‖u1 × u2‖2 and {V 3(u1, u2, u3)}2 = {〈u1, u2 × u3〉}2, where
u× v is a vector product of u and v. In this point of a view, the formulation of
the volume V n

1 (u1, . . . , un) of parallel 2n-hedron spanned by timelike linearly
independent vectors u1, u2, . . . , un in the Lorentz vector space with a Lorentz
product b is meaningful and natural. In this paper, we obtain the formula of
V n

1 (u1, . . . , un) as

{V n
1 (u1, u2, . . . , un)}2 =

∣∣∣∣∣∣∣∣∣

−b(u1, u1) −b(u1, u2) · · · −b(u1, un)
−b(u2, u1) −b(u2, u2) · · · −b(u2, un)

...
...

. . .
...

−b(un, u1) −b(un, u2) · · · −b(un, un)

∣∣∣∣∣∣∣∣∣

in the Lorentz vector space Un
1 with a Lorentz product b (cf. Theorem 3.2).

2. Semi-Riemannian spaces

Now, we prepare some definitions and notations for later use, and summarize
known results for our main theorem. Let U be an n-dimensional real vector
space and b a symmetric bilinear form of U × U into R. The index ν of a
symmetric bilinear form b on U is defined by the largest integer that is the
dimension of a subspace W of U on which b|W is negative definite. Hence, we
can see that 0 ≤ ν ≤ n, ν = 0 if and only if bilinear form b is positive definite,
and ν = n if and only if b is negative definite. In general, the symmetric bilinear
form b with index ν has the form

b(v, w) = −
ν∑

i=1

viwi +
n∑

i=ν+1

viwi.

The resulting semi-Riemannian space is denoted by Un
ν . Un

ν is reduced to Un

if ν = 0. If 0 < ν < n, then b is said to be indefinite. In particular, if ν = 1,
then b is called a Lorentz product and U with such a symmetric bilinear form
b is called a Lorentz vector space.

A symmetric bilinear form b on a vector space U is called a scalar product if
it is non-degenerate and semi-definite. Also, a symmetric bilinear form b on U
is called an inner product if it is definite. A vector space U is said to be a scalar
product space, an inner product space or a Lorentz vector space provided that
U is furnished with a scalar product, an inner product or a Lorentz product
respectively.

For a scalar product space (U, b) equipped with a scalar product b, a vector
v in U is said to be ([4])

spacelike if b(v, v) > 0 or v = 0,
null if b(v, v) = 0 and v 6= 0,

timelike if b(v, v) < 0.
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Let U be a Lorentz vector space with Lorentz product b and T be the set of
all timelike vectors in U . For u ∈ T ,

C(u) = {v ∈ T : b(u, v) < 0}
is called a timecone of U containing u.

Vectors v and w in U are said to be orthogonal if b(v, w) = 0. Subsets A
and B in U are said to be orthogonal provided that v and w are orthogonal for
any vectors v in A and w in B. Orthogonal vectors u, v or orthogonal subsets
A,B in U are denoted by u⊥v or A⊥B respectively. For a subspace W in U ,
the set W⊥ consists of vectors in U , where every vector in U is orthogonal to
W . W⊥ is called a W -perpendicular subspace of U . The following lemma is
well known ([3]).

Lemma 2.1. Timelike vectors v and w in the Lorentz vector space are in the
same timecone if and only if b(v, w) < 0.

In a vector space with inner product, the Schwarz inequality is derived from
definition of the angle θ between v and w as the unique number 0 ≤ θ ≤ π such
that cosθ = b(v,w)

‖v‖‖w‖ . An analogus Lorentz case is as follows ([3]).

Proposition 2.2. Let v and w be timelike vectors in a Lorentz vector space
U . Then we have the following properties;

(1) ‖b(v, w)‖ ≥ ‖v‖‖w‖, where the equality holds if and only if v and w are
collinear.

(2) If v and w are contained in the same timecone of v, then there is a
unique number θ(≥ 0) such that

b(v, w) = −‖v‖‖w‖ cosh θ.

In this case, θ is called the hyperbolic angle between v and w.

From these properties, we can obtain the triangle inequality for Lorentzian
geometry. Notice the fact that unlike the triangle inequality for Euclidean
geometry, the norm of the addition of two timelike vectors is greater than the
addition of the two norms of two timelike vectors considered.

Corollary 2.3 ([3]). If v and w are timelike vectors in the same timecone,
then we have

‖v‖+ ‖w‖ ≤ ‖v + w‖,
where the equality holds if and only if v and w are collinear.

Next, we consider a property of a 3-dimensional Lorentz vector space U3
1

with a Lorentz product b. For any vectors u = (uA) = (u1, u2, u3) and v =
(vA) = (v1, v2, v3) in U3

1 , the Lorentz product is defined by b(u, v) = −u1v1 +
u2v2 + u3v3. Then a Lorentz cross product u× v is defined by

u× v = (−u2v3 + u3v2, u3v1 − u1v3, u1v2 − u2v1) =

∣∣∣∣∣∣

−i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
,
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where |A| is the determinant of A.
For the Lorentz cross product, the following properties are well-known ([3]).

Lemma 2.4. For u, v, w, z ∈ U3
1 , we have

(1) u× v = 0 if and only if u and v are collinear,
(2) u× v = −v × u,
(3) b(u× v, u) = b(u× v, v) = 0,

(4) b(u × v, w) = b(v × w, u) =

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
, where u = (u1, u2, u3),

v = (v1, v2, v3), w = (w1, w2, w3),
(5) if u or v is timelike, then u× v is spacelike,

(6) b(u×v, w×z) = b(u, z)b(v, w)−b(u, w)b(v, z) =
∣∣∣∣
−b(u, z) −b(u,w)
−b(v, z) −b(v, w)

∣∣∣∣.

3. Volumes of parallel 2n-hedron in a Lorentz vector space

In this section, we study the volume V n
1 (u1, u2, . . . , un) of parallel 2n-hedron

spanned by timelike linearly independent vectors u1, u2, . . . , un in a Lorentz
vector space Un

1 . Then, using the Lemma 2.4, V 1
1 (u) and V 2

1 (u, v) are given by

(3.1) {V 1
1 (u)}2 = ‖u‖2 = −b(u, u)

and

(3.2) {V 2
1 (u, v)}2 = ‖u× v‖2 = −b(u× v, u× v) =

∣∣∣∣
−b(u, u) −b(u, v)
−b(v, u) −b(v, v)

∣∣∣∣ ,

where u, v are not in the same timecone.
For linearly independent timelike vectors u, v and w, we assume that none

of them are in the same timecone. Then the value of a symmetric bilinear form
b of any two vectors is non-negative by the Lemma 2.1. In this case, we can
calculate {V 3

1 (u, v, w)}2 as follows:

Theorem 3.1. Let u, v, w be linearly independent timelike vectors and none of
them are in the same timecone. Then we have

{V 3
1 (u, v, w)}2 =

∣∣∣∣∣∣

−b(u, u) −b(u, v) −b(u,w)
−b(v, u) −b(v, v) −b(v, w)
−b(w, u) −b(w, v) −b(w,w)

∣∣∣∣∣∣
.

Proof. In a 3-dimensional Lorentz vector space U3
1 , the volume V 3

1 (u, v, w)
of parallel 6-hedron spanned by linearly independent timelike vectors u =
(u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3) is

b(u× v, w) = detA,

where A is the 3× 3 matrix
(

u1 u2 u3
v1 v2 v3
w1 w2 w3

)
.
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Then the square of volumes {V 3
1 (u, v, w)}2 = b(u× v, w)2 is calculated by

(3.3)

{V 3
1 (u, v, w)}2 = b(u× v, w)2 = (detA)2

= u2
1v

2
3w2

2 + w2
1u

2
3v

2
2 + v2

1u2
2w

2
3 + v2

1u2
3w

2
2 + w2

1u
2
2v

2
3

+ u2
1v

2
2w2

3 − 2u2
1v2w3v3w2 − 2u1v2w

2
3v1u2 + 2u1v2w3v1u3w2

+ 2u1v2w3w1u2v3 − 2u1v
2
2w3w1u3 + 2u1v3w2v1u2w3 − 2u1v3w

2
2v1u3

− 2u1v
2
3w2w1u2 + 2u1v3w2w1u3v2 − 2v2

1u2w3u3w2 − 2v1u
2
2w3w1v3

+ 2v1u2w3w1u3v2 + 2v1u3w2w1u2v3 − 2v1u
2
3w2w1v2 − 2w2

1u2v3u3v2.

As we expected, we can see that

(3.4)

∣∣∣∣∣∣

−b(u, u) −b(u, v) −b(u,w)
−b(v, u) −b(v, v) −b(v, w)
−b(w, u) −b(w, v) −b(w,w)

∣∣∣∣∣∣
= u2

1v
2
3w2

2 + w2
1u

2
3v

2
2 + v2

1u2
2w

2
3 + v2

1u2
3w

2
2 + w2

1u
2
2v

2
3

+ u2
1v

2
2w2

3 − 2u2
1v2w3v3w2 − 2u1v2w

2
3v1u2

+ 2u1v2w3v1u3w2 + 2u1v2w3w1u2v3

− 2u1v
2
2w3w1u3 + 2u1v3w2v1u2w3

− 2u1v3w
2
2v1u3 − 2u1v

2
3w2w1u2

+ 2u1v3w2w1u3v2 − 2v2
1u2w3u3w2

− 2v1u
2
2w3w1v3 + 2v1u2w3w1u3v2

+ 2v1u3w2w1u2v3 − 2v1u
2
3w2w1v2 − 2w2

1u2v3u3v2.

We can easily calculate (3.3) and (3,4) using the maple program. The maple
program for calculating (3.3) and (3.4) are given by

>with(linalg);

>A:=<<u1,v1,w1>|<u2,v2,w2>|<u3,v3,w3>>;

>B:=<<u1*u1-u2*u2-u3*u3,u1*v1-u2*v2-u3*v3,u1*w1-u2*w2-u3*w3>|

<u1*v1-u2*v2-u3*v3,v1*v1-v2*v2-v3*v3,v1*w1-v2*w2-v3*w3>|

<u1*w1-u2*w2-u3*w3,v1*w1-v2*w2-v3*w3,w1*w1-w2*w2-w3*w3>>;

>C=expand(det(A)*det(A)); eq.(3.3)

>D=det(B); eq.(3.4)

>R=expand(det(A)*det(A))-det(B); Test for eq.(3.3) equals eq.(3.4)

Hence we see that

{V 3
1 (u, v, w)}2 =

∣∣∣∣∣∣

−b(u, u) −b(u, v) −b(u, w)
−b(v, u) −b(v, v) −b(v, w)
−b(w, u) −b(w, v) −b(w, w)

∣∣∣∣∣∣

from (3.3) and (3.4). ¤
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Finally, let us investigate the volume V n
1 (u1, u2, . . . , un) of parallel 2n-hedron

spanned by linearly independent timelike vectors u1, u2, . . . , un and none of
them are in the same timecone. Then we have the following theorem.

Theorem 3.2. Let u1, u2, . . . , un be linearly independent timelike vectors in
Un

1 and none of them are in the same timecone. Then the volume of parallel
2n-hedron spanned by u1, u2, . . . , un is

(3.5)

{V n
1 (u1, u2, . . . , un)}2

=

∣∣∣∣∣∣∣∣∣

−b(u1, u1) −b(u1, u2) · · · −b(u1, un)
−b(u2, u1) −b(u2, u2) · · · −b(u2, un)

...
...

. . .
...

−b(un, u1) −b(un, u2) · · · −b(un, un)

∣∣∣∣∣∣∣∣∣
.

Proof. For V n
1 (u1, u2, . . . , un), we have formulated in (3.1), (3.2) and Theorem

3.1 for n = 1, 2, 3. Assume that V n−1
1 (u1, u2, . . . , un−1) is given by

{V n−1
1 (u1, u2, . . . , un−1)}2

=

∣∣∣∣∣∣∣∣∣

−b(u1, u1) −b(u1, u2) · · · −b(u1, un−1)
−b(u2, u1) −b(u2, u2) · · · −b(u2, un−1)

...
...

. . .
...

−b(un−1, u1) −b(un−1, u2) · · · −b(un−1, un−1)

∣∣∣∣∣∣∣∣∣

and consider the volume of parallel 2n-hedron spanned by linearly independent
timelike vectors u1, u2, . . . , un. Let vn = un−

∑n−1
i=1 λiui for λ1, λ2, . . . , λn−1 ∈

R. Then we can take λ1, λ2, . . . , λn−1 such that

(3.6) b(vn, uj) = b(un, uj)−
n−1∑

i=1

λib(ui, uj) = 0

for j = 1, 2, . . . , n− 1. In this case, wn =
∑n−1

i=1 λiui is the projection of un to
the (n − 1)-dimensional vector space Wn−1

1 spanned by u1, u2, . . . , un−1, and
vn = un − wn is the component of un to (Wn−1

1 )⊥.
Therefore, by induction,

(3.7) V n
1 (u1, u2, . . . , un) = V n−1

1 (u1, u2, . . . , un−1)× ‖vn‖.

Whereas, in the right hand side of (3.5), if we subtract the sum of

n−1∑

i=1

λi× (component of i-th column) =
n−1∑

i=1

λi(−b(uj , ui)) (j = 1, 2, . . . , n− 1),
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from each component of the n-th column, then we get

(3.8)

∣∣∣∣∣∣∣∣∣

−b(u1, u1) −b(u1, u2) · · · −b(u1, un)
−b(u2, u1) −b(u2, u2) · · · −b(u2, un)

...
...

. . .
...

−b(un, u1) −b(un, u2) · · · −b(un, un)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

−b(u1, u1) · · · −b(u1, un−1) 0
...

...
. . .

...
−b(un−1, u1) · · · −b(un−1, un−1) 0
−b(un, u1) · · · −b(un, un−1) −b(un, vn)

∣∣∣∣∣∣∣∣∣

= {V n−1
1 (u1, u2, . . . , un−1)}2 × | − b(un, vn)|.

Since b(vn, uj) = 0 (j = 1, 2, . . . , n− 1) by (3.6), we obtain

b(vn, vn) = b(un, vn)−∑n−1
i=1 λib(ui, vn)

= b(un, vn).

Hence, by (3.7) and (3.8), we can see that
∣∣∣∣∣∣∣∣∣

−b(u1, u1) −b(u1, u2) · · · −b(u1, un)
−b(u2, u1) −b(u2, u2) · · · −b(u2, un)

...
...

. . .
...

−b(un, u1) −b(un, u2) · · · −b(un, un)

∣∣∣∣∣∣∣∣∣

= {V n−1
1 (u1, u2, . . . , un−1)}2 × ‖vn‖2

= {V n
1 (u1, u2, . . . , un)}2.

Thus the proof is completed. ¤

Since the orthogonality of timelike vectors induces a linearly independence
and none of them are in the same timecone by the Lemma 2.1, we have:

Corollary 3.3. Let u1, u2, . . . , un be mutually orthogonal timelike vectors in
Un

1 . Then we have the same formula as (3.5) :

{V n
1 (u1, u2, . . . , un)}2 =

∣∣∣∣∣∣∣∣∣

−b(u1, u1) −b(u1, u2) · · · −b(u1, un)
−b(u2, u1) −b(u2, u2) · · · −b(u2, un)

...
...

. . .
...

−b(un, u1) −b(un, u2) · · · −b(un, un)

∣∣∣∣∣∣∣∣∣
.
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