ON SELF-RECIPROCAL POLYNOMIALS AT A POINT ON THE UNIT CIRCLE

Seon-Hong Kim

Abstract

Given two integral self-reciprocal polynomials having the same modulus at a point z_{0} on the unit circle, we show that the minimal polynomial of z_{0} is also self-reciprocal and it divides an explicit integral self-reciprocal polynomial. Moreover, for any two integral self-reciprocal polynomials, we give a sufficient condition for the existence of a point z_{0} on the unit circle such that the two polynomials have the same modulus at z_{0}.

1. Introduction and statement of results

Throughout this paper, U denotes the unit circle and n is a positive integer. A polynomial $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ is said to be a self-reciprocal polynomial of degree n if it satisfies $a_{n} \neq 0$ and $P(z)=z^{n} P(1 / z)$. Thus the zeros of a self-reciprocal polynomial either lie on the unit circle or are symmetric with respect to U. There have been a number of interesting problems (for example [2]) about the distribution of zeros of self-reciprocal polynomials. Also the minimal polynomial of an algebraic number α is the unique irreducible monic polynomial $f(z)$ of smallest degree with rational coefficients such that $f(\alpha)=0$.

In this paper, we study a generalization of an already rather general problem, that of determining the zeros of a polynomial on U. This maybe phrased as finding z with $|z|=1$ such that $|P(z)|=0$, where $P(z)$ is a polynomial. We propose broaden this to the problem for finding z with $|z|=1$ such that $|P(z)|=|Q(z)|$, where $P(z)$ and $Q(z)$ are polynomials. A first priority in this fashion seems to determine the minimal polynomial $F(z)$ of an element of the set

$$
\{z:|P(z)|=|Q(z)|,|z|=1\}
$$

Received September 19, 2008.
2000 Mathematics Subject Classification. Primary 30C15; Secondary 26C10.
Key words and phrases. self-reciprocal polynomials, zeros, unit circle.
This Research was supported by the Sookmyung Women's University Research Grants 2009.

Also, what can be said about the number of zeros on U of $F(z)$? We study these questions in case that the polynomials are integral and self-reciprocal.

Now we establish the first result.
Theorem 1. Let $P(z)$ and $Q(z)$ be integral self-reciprocal polynomials with $\operatorname{deg} P(z)=m \geq n=\operatorname{deg} Q(z)$. Suppose that

$$
\left|P\left(z_{0}\right)\right|=\left|Q\left(z_{0}\right)\right| \neq 0
$$

for some z_{0} with $\left|z_{0}\right|=1$ and $z_{0} \neq 1$. Then the minimal polynomial of z_{0} is also self-reciprocal and it divides integral self-reciprocal polynomial $P(z)^{2}-$ $z^{m-n} Q(z)^{2}$.

In above theorem, $z_{0} \neq 1$ is required because the minimal polynomial of 1 is $z-1$ which is not self-reciprocal. One may ask whether there always exist z_{0} with $\left|z_{0}\right|=1$ and $z_{0} \neq 1$ such that $\left|P\left(z_{0}\right)\right|=\left|Q\left(z_{0}\right)\right|$ for any two integral self-reciprocal polynomials $P(z)$ and $Q(z)$. But an example of

$$
P(z)=z^{3}-2 z^{2}-2 z+1, \quad Q(z)=z^{2}-7 z+1
$$

gives the negative answer by Theorem 1. This is because $P(z)^{2}-z^{m-n} Q(z)^{2}$ has no zeros on U. Hence it is interesting to mention the condition that the question above is true. We now give a sufficient condition for that when $P(z)$ and $Q(z)$ are even degrees of polynomials.

Theorem 2. For even integers m and n, let

$$
P(z)=\sum_{k=0}^{m} a_{k} z^{k}, \quad Q(z)=\sum_{k=0}^{n} b_{k} z^{k}
$$

be integral self-reciprocal polynomials with $\operatorname{deg} P(z)=m \geq n=\operatorname{deg} Q(z)$. If either

$$
\left(a_{\frac{m}{2}}-b_{\frac{n}{2}}\right)^{2}<\frac{8}{4 m+3}\left[\sum_{k=1}^{\frac{n}{2}}\left(a_{\frac{m}{2}-k}-b_{\frac{n}{2}-k}\right)^{2}+\sum_{k=\frac{n}{2}+1}^{\frac{m}{2}} a_{\frac{m}{2}-k}^{2}\right]
$$

or

$$
\left(a_{\frac{m}{2}}+b_{\frac{n}{2}}\right)^{2}<\frac{8}{4 m+3}\left[\sum_{k=1}^{\frac{n}{2}}\left(a_{\frac{m}{2}-k}+b_{\frac{n}{2}-k}\right)^{2}+\sum_{k=\frac{n}{2}+1}^{\frac{m}{2}} a_{\frac{m}{2}-k}^{2}\right]
$$

then there exists $z_{0} \in \mathbb{C}$ with $\left|z_{0}\right|=1$ such that

$$
\left|P\left(z_{0}\right)\right|=\left|Q\left(z_{0}\right)\right| .
$$

In Section 2, we provide proofs and some examples of Theorems 1 and 2.

2. Proofs and examples

Proof of Theorem 1. The first part of the theorem follows from the well known fact that the integral minimal polynomial $f(z)$ of degree d of z_{0} with $\left|z_{0}\right|=1$ is self-reciprocal. This is because

$$
z_{0}^{d} f\left(z_{0}^{-1}\right)=z_{0}^{d} f\left(\overline{z_{0}}\right)=0
$$

and z_{0} is a zero of the polynomial $z^{n} f\left(z^{-1}\right)$ which has degree d. Since the minimal is unique, we have $f(z)=z^{d} f\left(z^{-1}\right)$. We now prove the second part of the theorem. Suppose that $P(z)$ and $Q(z)$ are integral self-reciprocal polynomials with $\operatorname{deg} P(z)=m \geq n=\operatorname{deg} Q(z)$. Consider $2 m$ degree polynomial

$$
F(z)=P(z)^{2}-z^{m-n} Q(z)^{2}
$$

Then $F(z)$ is an integral self-reciprocal polynomial since

$$
\begin{aligned}
z^{2 m} F\left(z^{-1}\right) & =z^{2 m}\left(P\left(z^{-1}\right)^{2}-z^{-m+n} Q\left(z^{-1}\right)^{2}\right) \\
& =z^{2 m}\left(z^{-2 m} P(z)^{2}-z^{-m+n} z^{-2 n} Q(z)^{2}\right) \\
& =P(z)^{2}-z^{m-n} Q(z)^{2}=F(z)
\end{aligned}
$$

Suppose that $\left|P\left(z_{0}\right)\right|^{2}=\left|Q\left(z_{0}\right)\right|^{2}$ for some z_{0} with $\left|z_{0}\right|=1$ and $z_{0} \neq 1$. Using $\overline{z_{0}}=1 / z_{0}$ and $P(z), Q(z)$ self-reciprocal, we have

$$
\begin{aligned}
0 & =P\left(z_{0}\right) \overline{P\left(z_{0}\right)}-Q\left(z_{0}\right) \overline{Q\left(z_{0}\right)}=P\left(z_{0}\right) P\left(z_{0}^{-1}\right)-Q\left(z_{0}\right) Q\left(z_{0}^{-1}\right) \\
& =z_{0}^{-m} P\left(z_{0}\right)^{2}-z_{0}^{-n} Q\left(z_{0}\right)^{2}=z_{0}^{-m}\left(P\left(z_{0}\right)^{2}-z_{0}^{m-n} Q\left(z_{0}\right)^{2}\right) \\
& =z_{0}^{-m} F\left(z_{0}\right),
\end{aligned}
$$

which completes the proof.
Example 3. Let $P(z)=z^{4}+1$ and $Q(z)=z^{2}+1$. For $z_{0}=\frac{1 \pm i \sqrt{3}}{2}$ and $z_{1}=\frac{-1 \pm i \sqrt{3}}{2}$, we may compute that

$$
\left|P\left(z_{0}\right)\right|=\left|Q\left(z_{0}\right)\right|=\left|P\left(z_{1}\right)\right|=\left|Q\left(z_{1}\right)\right|=1 .
$$

Also the minimal polynomials of z_{0} and z_{1} are

$$
z^{2}-z+1
$$

and

$$
z^{2}+z+1
$$

respectively. Now we can confirm that the two polynomials above, $z^{2} \pm z+1$, are factors of

$$
\left(z^{4}+1\right)^{2}-z^{2}\left(z^{2}+1\right)^{2}=(z-1)^{2}(z+1)^{2}\left(z^{2}+z+1\right)^{2}\left(z^{2}-z+1\right)^{2}
$$

Example 4. Consider the self-reciprocal polynomials

$$
z^{3}+1 \quad \text { and } \quad z^{2}+z+1
$$

having all their zeros on U. By Theorem 1, a complex number z_{0} on U with $\left|z_{0}^{3}+1\right|=\left|z_{0}^{2}+z_{0}+1\right|$ must have the minimal polynomial

$$
F(z)=z^{6}-z^{5}-2 z^{4}-z^{3}-2 z^{2}-z+1
$$

since

$$
\left(z^{3}+1\right)^{2}-z\left(z^{2}+z+1\right)=F(z)
$$

and $F(z)$ is irreducible.
The minimal polynomials of z_{0} and z_{1} in Example 3 have all their zeros on U. However we may verify that $F(z)$ in Example 4 has two zeros not on U. Hence it is natural to ask which self-reciprocal polynomials $P(z)$ and $Q(z)$ in Theorem 1 give the minimal polynomial of z_{0} having all its zeros on U. We now provide two examples of such pairs of polynomials:
(1) $P(z)=z^{n+k}+1, Q(z)=z^{n}+1$.

For $k \geq 1$,

$$
\begin{aligned}
& \left(z^{n+k}+1\right)^{2}-z^{k}\left(z^{n}+1\right)^{2} \\
= & \left(z^{k}-1\right)\left(z^{2 n+k}-1\right) \\
= & (z-1)^{2}\left(z^{k-1}+z^{k-2}+\cdots+1\right)\left(z^{2 n+k-1}+z^{2 n+k-2}+\cdots+1\right) .
\end{aligned}
$$

(2) $P(z)=\frac{z^{m}-1}{z-1}, Q(z)=\frac{z^{n}-1}{z-1}$.

For $m \geq n$,

$$
\begin{aligned}
& \left(\frac{z^{m}-1}{z-1}\right)^{2}-z^{m-n}\left(\frac{z^{n}-1}{z-1}\right)^{2} \\
= & \frac{\left(z^{m-n}-1\right)\left(z^{m+n}-1\right)}{(z-1)^{2}} \\
= & \left(z^{m-n-1}+z^{m-n-2}+\cdots+1\right)\left(z^{m+n-1}+z^{m+n-2}+\cdots+1\right) .
\end{aligned}
$$

For the proof of Theorem 2, we need the following lemma which is the Nikolskii-type inequality (see Theorem 2.6 of [1]) for the class of real trigonometric polynomials of degree at most n.

Let $\mathbf{K}:=\mathbb{R}(\bmod 2 \pi)$. For $f \in C(\mathbf{K})$, let

$$
\|f\|_{p}:=\left(\int_{0}^{2 \pi}|f(\theta)|^{p} d \theta\right)^{1 / p}, \quad 0<p<\infty
$$

Lemma 5. Let T_{n} be a real trigonometric polynomial of degree at most n, and $0<q \leq p \leq \infty$. Then we have

$$
\left\|T_{n}\right\|_{p} \leq\left(\frac{2 r n+1}{2 \pi}\right)^{\frac{1}{q}-\frac{1}{p}}\left\|T_{n}\right\|_{q}
$$

where $r:=r(q)$ is the smallest integer not less than $q / 2$.
Proof of Theorem 2. For even integers m and n, let

$$
P(z)=\sum_{k=0}^{m} a_{k} z^{k}, \quad Q(z)=\sum_{k=0}^{n} b_{k} z^{k}
$$

be integral self-reciprocal polynomials with $\operatorname{deg} P(z)=m \geq n=\operatorname{deg} Q(z)$.
Suppose that

$$
|P(z)| \neq|Q(z)|
$$

for all $z \in \mathbb{C}$ with $|z|=1$. Write $F(z)=F_{1}(z) F_{2}(z)$, where

$$
F_{1}(z)=P(z)-z^{\frac{m-n}{2}} Q(z), \quad F_{2}(z)=P(z)+z^{\frac{m-n}{2}} Q(z)
$$

Then both $F_{1}(z)$ and $F_{2}(z)$ have no zeros on U and $\operatorname{deg} F_{1}(z)=\operatorname{deg} F_{2}(z)=m$.
Now we have

$$
\frac{F_{1}(z)}{z^{\frac{m}{2}}}=\frac{P(z)}{z^{\frac{m}{2}}}-\frac{Q(z)}{z^{\frac{n}{2}}} .
$$

Since, for $z=e^{i \theta}$, we have

$$
\begin{aligned}
\frac{P(z)}{z^{\frac{m}{2}}} & =a_{\frac{m}{2}}+a_{\frac{m}{2}-1}\left(z+\frac{1}{z}\right)+a_{\frac{m}{2}-2}\left(z^{2}+\frac{1}{z^{2}}\right)+\cdots+a_{0}\left(z^{\frac{m}{2}}+\frac{1}{z^{\frac{m}{2}}}\right) \\
& =a_{\frac{m}{2}}+2\left(a_{\frac{m}{2}-1} R e z+\cdots+a_{0} R e z^{\frac{m}{2}}\right) \\
& =a_{\frac{m}{2}}+2\left(a_{\frac{m}{2}-1} \cos (\theta)+\cdots+a_{0} \cos \left(\frac{m}{2} \theta\right)\right)
\end{aligned}
$$

and similarly

$$
\frac{Q(z)}{z^{\frac{n}{2}}}=b_{\frac{n}{2}}+2\left(b_{\frac{n}{2}-1} \cos (\theta)+\cdots+b_{0} \cos \left(\frac{n}{2} \theta\right)\right)
$$

Since $F_{1}(z)$ has no zeros on U,

$$
\begin{aligned}
T(\theta):= & \frac{F_{1}(z)}{z^{\frac{m}{2}}}=\frac{P(z)}{z^{\frac{m}{2}}}-\frac{Q(z)}{z^{\frac{n}{2}}} \\
= & \left(a_{\frac{m}{2}}+2\left(a_{\frac{m}{2}-1} \cos (\theta)+\cdots+a_{0} \cos \left(\frac{m}{2} \theta\right)\right)\right) \\
& -\left(b_{\frac{n}{2}}+2\left(b_{\frac{n}{2}-1} \cos (\theta)+\cdots+b_{0} \cos \left(\frac{n}{2} \theta\right)\right)\right) \\
= & a_{\frac{m}{2}}-b_{\frac{n}{2}}+2 \sum_{k=1}^{\frac{n}{2}}\left(a_{\frac{m}{2}-k}-b_{\frac{n}{2}-k}\right) \cos (k \theta) \\
& +2 \sum_{k=\frac{n}{2}+1}^{\frac{m}{2}} a_{\frac{m}{2}-k} \cos (k \theta)
\end{aligned}
$$

has no any real zeros. Without loss of generality we may assume that T is positive on the real line. Then we have

$$
\|T\|_{1}=\int_{0}^{2 \pi} T(\theta) d \theta=2 \pi\left(a_{\frac{m}{2}}-b_{\frac{n}{2}}\right)
$$

Using the Parseval formula, we also have

$$
\begin{aligned}
\|T\|_{2}^{2}= & \int_{0}^{2 \pi} T(\theta)^{2} d \theta=\frac{\pi}{2}\left(a_{\frac{m}{2}}-b_{\frac{n}{2}}\right)^{2} \\
& +4 \pi\left[\sum_{k=1}^{\frac{n}{2}}\left(a_{\frac{m}{2}-k}-b_{\frac{n}{2}-k}\right)^{2}+\sum_{k=\frac{n}{2}+1}^{\frac{m}{2}} a_{\frac{m}{2}-k}^{2}\right] .
\end{aligned}
$$

By Lemma 5,

$$
\|T\|_{2}^{2} \leq\left(\frac{m+1}{2 \pi}\right)\|T\|_{1}^{2}
$$

and so

$$
\begin{aligned}
& \frac{1}{2}\left(a_{\frac{m}{2}}-b_{\frac{n}{2}}\right)^{2}+4\left[\sum_{k=1}^{\frac{n}{2}}\left(a_{\frac{m}{2}-k}-b_{\frac{n}{2}-k}\right)^{2}+\sum_{k=\frac{n}{2}+1}^{\frac{m}{2}} a_{\frac{m}{2}-k}^{2}\right] \\
\leq & \left(\frac{m+1}{2 \pi}\right) 4 \pi\left(a_{\frac{m}{2}}-b_{\frac{n}{2}}\right)^{2}=2(m+1)\left(a_{\frac{m}{2}}-b_{\frac{n}{2}}\right)^{2},
\end{aligned}
$$

i.e.,

$$
\left(a_{\frac{m}{2}}-b_{\frac{n}{2}}\right)^{2} \geq \frac{8}{4 m+3}\left[\sum_{k=1}^{\frac{n}{2}}\left(a_{\frac{m}{2}-k}-b_{\frac{n}{2}-k}\right)^{2}+\sum_{k=\frac{n}{2}+1}^{\frac{m}{2}} a_{\frac{m}{2}-k}^{2}\right] .
$$

Using $F_{2}(z)$ having no zeros on U, we follow above method to get

$$
\left(a_{\frac{m}{2}}+b_{\frac{n}{2}}\right)^{2} \geq \frac{8}{4 m+3}\left[\sum_{k=1}^{\frac{n}{2}}\left(a_{\frac{m}{2}-k}+b_{\frac{n}{2}-k}\right)^{2}+\sum_{k=\frac{n}{2}+1}^{\frac{m}{2}} a_{\frac{m}{2}-k}^{2}\right]
$$

which completes the proof.

References

[1] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
[2] S.-H. Kim, The zeros of certain family of self-reciprocal polynomials, Bull. Korean Math. Soc. 44 (2007), no. 3, 461-473.

Department of Mathematics
Sookmyung Women's University
Seoul 140-742, Korea
E-mail address: shkim17@sookmyung.ac.kr

