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ON SELF-RECIPROCAL POLYNOMIALS AT A POINT
ON THE UNIT CIRCLE

Seon-Hong Kim

Abstract. Given two integral self-reciprocal polynomials having the sa-
me modulus at a point z0 on the unit circle, we show that the minimal
polynomial of z0 is also self-reciprocal and it divides an explicit integral
self-reciprocal polynomial. Moreover, for any two integral self-reciprocal
polynomials, we give a sufficient condition for the existence of a point z0

on the unit circle such that the two polynomials have the same modulus
at z0.

1. Introduction and statement of results

Throughout this paper, U denotes the unit circle and n is a positive integer.
A polynomial P (z) = anzn + an−1z

n−1 + · · ·+ a0 is said to be a self-reciprocal
polynomial of degree n if it satisfies an 6= 0 and P (z) = znP (1/z). Thus
the zeros of a self-reciprocal polynomial either lie on the unit circle or are
symmetric with respect to U . There have been a number of interesting problems
(for example [2]) about the distribution of zeros of self-reciprocal polynomials.
Also the minimal polynomial of an algebraic number α is the unique irreducible
monic polynomial f(z) of smallest degree with rational coefficients such that
f(α) = 0.

In this paper, we study a generalization of an already rather general problem,
that of determining the zeros of a polynomial on U . This maybe phrased as
finding z with |z| = 1 such that |P (z)| = 0, where P (z) is a polynomial.
We propose broaden this to the problem for finding z with |z| = 1 such that
|P (z)| = |Q(z)|, where P (z) and Q(z) are polynomials. A first priority in this
fashion seems to determine the minimal polynomial F (z) of an element of the
set

{z : |P (z)| = |Q(z)|, |z| = 1}.
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Also, what can be said about the number of zeros on U of F (z)? We study
these questions in case that the polynomials are integral and self-reciprocal.

Now we establish the first result.

Theorem 1. Let P (z) and Q(z) be integral self-reciprocal polynomials with
deg P (z) = m ≥ n = deg Q(z). Suppose that

|P (z0)| = |Q(z0)| 6= 0

for some z0 with |z0| = 1 and z0 6= 1. Then the minimal polynomial of z0

is also self-reciprocal and it divides integral self-reciprocal polynomial P (z)2 −
zm−nQ(z)2.

In above theorem, z0 6= 1 is required because the minimal polynomial of 1
is z − 1 which is not self-reciprocal. One may ask whether there always exist
z0 with |z0| = 1 and z0 6= 1 such that |P (z0)| = |Q(z0)| for any two integral
self-reciprocal polynomials P (z) and Q(z). But an example of

P (z) = z3 − 2z2 − 2z + 1, Q(z) = z2 − 7z + 1

gives the negative answer by Theorem 1. This is because P (z)2 − zm−nQ(z)2

has no zeros on U . Hence it is interesting to mention the condition that the
question above is true. We now give a sufficient condition for that when P (z)
and Q(z) are even degrees of polynomials.

Theorem 2. For even integers m and n, let

P (z) =
m∑

k=0

akzk, Q(z) =
n∑

k=0

bkzk

be integral self-reciprocal polynomials with deg P (z) = m ≥ n = deg Q(z). If
either

(
am

2
− bn

2

)2
<

8
4m + 3




n
2∑

k=1

(
am

2 −k − bn
2−k

)2 +

m
2∑

k= n
2 +1

a2
m
2 −k




or

(
am

2
+ bn

2

)2
<

8
4m + 3




n
2∑

k=1

(
am

2 −k + bn
2−k

)2 +

m
2∑

k= n
2 +1

a2
m
2 −k


 ,

then there exists z0 ∈ C with |z0| = 1 such that

|P (z0)| = |Q(z0)|.
In Section 2, we provide proofs and some examples of Theorems 1 and 2.
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2. Proofs and examples

Proof of Theorem 1. The first part of the theorem follows from the well known
fact that the integral minimal polynomial f(z) of degree d of z0 with |z0| = 1
is self-reciprocal. This is because

zd
0f

(
z−1
0

)
= zd

0f(z0) = 0,

and z0 is a zero of the polynomial znf
(
z−1

)
which has degree d. Since the min-

imal is unique, we have f(z) = zdf
(
z−1

)
. We now prove the second part of the

theorem. Suppose that P (z) and Q(z) are integral self-reciprocal polynomials
with deg P (z) = m ≥ n = deg Q(z). Consider 2m degree polynomial

F (z) = P (z)2 − zm−nQ(z)2.

Then F (z) is an integral self-reciprocal polynomial since

z2mF (z−1) = z2m(P (z−1)2 − z−m+nQ(z−1)2)

= z2m(z−2mP (z)2 − z−m+nz−2nQ(z)2)

= P (z)2 − zm−nQ(z)2 = F (z).

Suppose that |P (z0)|2 = |Q(z0)|2 for some z0 with |z0| = 1 and z0 6= 1. Using
z0 = 1/z0 and P (z), Q(z) self-reciprocal, we have

0 = P (z0)P (z0)−Q(z0)Q(z0) = P (z0)P (z−1
0 )−Q(z0)Q(z−1

0 )

= z−m
0 P (z0)2 − z−n

0 Q(z0)2 = z−m
0 (P (z0)2 − zm−n

0 Q(z0)2)

= z−m
0 F (z0),

which completes the proof. ¤

Example 3. Let P (z) = z4 + 1 and Q(z) = z2 + 1. For z0 = 1±i
√

3
2 and

z1 = −1±i
√

3
2 , we may compute that

|P (z0)| = |Q(z0)| = |P (z1)| = |Q(z1)| = 1.

Also the minimal polynomials of z0 and z1 are

z2 − z + 1

and
z2 + z + 1,

respectively. Now we can confirm that the two polynomials above, z2 ± z + 1,
are factors of

(z4 + 1)2 − z2(z2 + 1)2 = (z − 1)2(z + 1)2(z2 + z + 1)2(z2 − z + 1)2.

Example 4. Consider the self-reciprocal polynomials

z3 + 1 and z2 + z + 1
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having all their zeros on U . By Theorem 1, a complex number z0 on U with
|z3

0 + 1| = |z2
0 + z0 + 1| must have the minimal polynomial

F (z) = z6 − z5 − 2z4 − z3 − 2z2 − z + 1

since
(z3 + 1)2 − z(z2 + z + 1) = F (z),

and F (z) is irreducible.

The minimal polynomials of z0 and z1 in Example 3 have all their zeros on
U . However we may verify that F (z) in Example 4 has two zeros not on U .
Hence it is natural to ask which self-reciprocal polynomials P (z) and Q(z) in
Theorem 1 give the minimal polynomial of z0 having all its zeros on U . We
now provide two examples of such pairs of polynomials:

(1) P (z) = zn+k + 1, Q(z) = zn + 1.

For k ≥ 1,

(zn+k + 1)2 − zk(zn + 1)2

= (zk − 1)(z2n+k − 1)

= (z − 1)2(zk−1 + zk−2 + · · ·+ 1)(z2n+k−1 + z2n+k−2 + · · ·+ 1).

(2) P (z) = zm−1
z−1 , Q(z) = zn−1

z−1 .

For m ≥ n,
(

zm − 1
z − 1

)2

− zm−n

(
zn − 1
z − 1

)2

=
(zm−n − 1)(zm+n − 1)

(z − 1)2

= (zm−n−1 + zm−n−2 + · · ·+ 1)(zm+n−1 + zm+n−2 + · · ·+ 1).

For the proof of Theorem 2, we need the following lemma which is the
Nikolskii-type inequality (see Theorem 2.6 of [1]) for the class of real trigono-
metric polynomials of degree at most n.

Let K := R (mod 2π). For f ∈ C(K), let

‖f‖p :=
(∫ 2π

0

|f(θ)|p dθ

)1/p

, 0 < p < ∞.

Lemma 5. Let Tn be a real trigonometric polynomial of degree at most n, and
0 < q ≤ p ≤ ∞. Then we have

‖Tn‖p ≤
(

2rn + 1
2π

) 1
q− 1

p

‖Tn‖q,
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where r := r(q) is the smallest integer not less than q/2.

Proof of Theorem 2. For even integers m and n, let

P (z) =
m∑

k=0

akzk, Q(z) =
n∑

k=0

bkzk

be integral self-reciprocal polynomials with deg P (z) = m ≥ n = deg Q(z).
Suppose that

|P (z)| 6= |Q(z)|
for all z ∈ C with |z| = 1. Write F (z) = F1(z)F2(z), where

F1(z) = P (z)− z
m−n

2 Q(z), F2(z) = P (z) + z
m−n

2 Q(z).

Then both F1(z) and F2(z) have no zeros on U and deg F1(z) = deg F2(z) = m.
Now we have

F1(z)
z

m
2

=
P (z)
z

m
2
− Q(z)

z
n
2

.

Since, for z = eiθ, we have
P (z)
z

m
2

= am
2

+ am
2 −1

(
z +

1
z

)
+ am

2 −2

(
z2 +

1
z2

)
+ · · ·+ a0

(
z

m
2 +

1
z

m
2

)

= am
2

+ 2
(
am

2 −1Re z + · · ·+ a0Re z
m
2
)

= am
2

+ 2
(
am

2 −1 cos(θ) + · · ·+ a0 cos
(m

2
θ
))

and similarly
Q(z)
z

n
2

= bn
2

+ 2
(
bn

2−1 cos(θ) + · · ·+ b0 cos
(n

2
θ
))

.

Since F1(z) has no zeros on U ,

T (θ) :=
F1(z)
z

m
2

=
P (z)
z

m
2
− Q(z)

z
n
2

=
(
am

2
+ 2

(
am

2 −1 cos(θ) + · · ·+ a0 cos
(m

2
θ
)))

−
(
bn

2
+ 2

(
bn

2−1 cos(θ) + · · ·+ b0 cos
(n

2
θ
)))

= am
2
− bn

2
+ 2

n
2∑

k=1

(
am

2 −k − bn
2−k

)
cos (kθ)

+ 2

m
2∑

k= n
2 +1

am
2 −k cos (kθ)

has no any real zeros. Without loss of generality we may assume that T is
positive on the real line. Then we have

‖T‖1 =
∫ 2π

0

T (θ) dθ = 2π
(
am

2
− bn

2

)
.
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Using the Parseval formula, we also have

‖T‖22 =
∫ 2π

0

T (θ)2 dθ =
π

2
(
am

2
− bn

2

)2

+ 4π




n
2∑

k=1

(
am

2 −k − bn
2−k

)2 +

m
2∑

k= n
2 +1

a2
m
2 −k


 .

By Lemma 5,

‖T‖22 ≤
(

m + 1
2π

)
‖T‖21

and so

1
2

(
am

2
− bn

2

)2 + 4




n
2∑

k=1

(
am

2 −k − bn
2−k

)2 +

m
2∑

k= n
2 +1

a2
m
2 −k




≤
(

m + 1
2π

)
4π

(
am

2
− bn

2

)2 = 2(m + 1)
(
am

2
− bn

2

)2
,

i.e.,

(
am

2
− bn

2

)2 ≥ 8
4m + 3




n
2∑

k=1

(
am

2 −k − bn
2−k

)2 +

m
2∑

k= n
2 +1

a2
m
2 −k


 .

Using F2(z) having no zeros on U , we follow above method to get

(
am

2
+ bn

2

)2 ≥ 8
4m + 3




n
2∑

k=1

(
am

2 −k + bn
2−k

)2 +

m
2∑

k= n
2 +1

a2
m
2 −k


 ,

which completes the proof. ¤
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