# ON THE GAUSS MAP OF SURFACES OF REVOLUTION WITHOUT PARABOLIC POINTS 

Young Ho Kim, Chul Woo Lee, and Dae Won Yoon


#### Abstract

In this article, we study surfaces of revolution without parabolic points in a Euclidean 3 -space whose Gauss map $G$ satisfies the condition $\Delta^{h} G=A G, A \in \operatorname{Mat}(3, \mathbb{R})$, where $\Delta^{h}$ denotes the Laplace operator of the second fundamental form $h$ of the surface and $\operatorname{Mat}(3, \mathbb{R})$ the set of $3 \times 3$-real matrices, and also obtain the complete classification theorem for those. In particular, we have a characterization of an ordinary sphere in terms of it.


## 1. Introduction

As is well known, the theory of Gauss map is always one of interesting topics in a Euclidean space and a pseudo-Euclidean space and it has been investigated from the various viewpoints by many differential geometers ( $[1,2,3,4,7,10]$ ).

Let $M$ be a connected surface in a Euclidean 3 -space $\mathbb{R}^{3}$, and $G: M \rightarrow \mathbb{S}^{2} \subset$ $\mathbb{R}^{3}$ its Gauss map. It is well known that $M$ has constant mean curvature if and only if $\Delta G=\|d G\|^{2} G$, where $\Delta$ is the Laplace operator on $M$ corresponding to the induced metric on $M$ from $\mathbb{R}^{3}([14])$. As a special case one can consider surfaces whose Gauss map is an eigenfunction of a Laplacian, that is, $\Delta G=$ $\lambda G, \lambda \in \mathbb{R}$. On the generalization of this equation, F. Dillen, J. Pas, and L. Verstraelen ([9]) studied surfaces of revolution in a Euclidean 3-space $\mathbb{R}^{3}$ such that its Gauss map $G$ satisfies the condition

$$
\begin{equation*}
\Delta G=A G, \quad A \in \operatorname{Mat}(3, \mathbb{R}) \tag{1.1}
\end{equation*}
$$

where $\operatorname{Mat}(3, \mathbb{R})$ denotes the set of $3 \times 3$-real matrices, and proved that such surfaces are the planes, the spheres and the circular cylinders. On the other hand, C. Baikoussis and D. E. Blair ([3]) investigated the ruled surfaces in $\mathbb{R}^{3}$ satisfying the condition (1.1). C. Baikoussis and L. Verstraelen ([4, 5]) studied the helicoidal surfaces and the spiral surfaces in $\mathbb{R}^{3}$ satisfying the condition (1.1). Also, for the Lorentz version, S. M. Choi ( $[7,8]$ ) completely classified the surfaces of revolution and the ruled surfaces with non-null base

[^0]curve satisfying the condition (1.1) in a Minkowski 3 -space $\mathbb{R}_{1}^{3}$, and L. J. Alías, A. Ferrández, P. Lucas, and M. A. Meroño ([2]) also studied the ruled surfaces with null ruling. On the extension of [8] and [2], Y. H. Kim and D. W. Yoon ([13]) investigated ruled surfaces in a Minkowski $m$-space $\mathbb{R}_{1}^{m}$ such that $\Delta G=A G, A \in \operatorname{Mat}(N, \mathbb{R}), N=\binom{m}{2}$. On the other hand, D. W. Yoon ([15]) studied the translation surface in $\mathbb{R}_{1}^{3}$ satisfying the condition (1.1).

Following the condition (1.1), an interesting geometric question is raised, the classification of all surfaces of revolution without parabolic points in a Euclidean 3 -space $\mathbb{R}^{3}$, which satisfy the condition

$$
\begin{equation*}
\Delta^{h} G=A G, \quad A \in \operatorname{Mat}(3, \mathbb{R}) \tag{1.2}
\end{equation*}
$$

where $\Delta^{h}$ is the Laplace operator with respect to the second fundamental form $h$ of the surface.

Throughout this paper, we assume that all objects are smooth and all surfaces are Riemannian, unless otherwise mentioned.

## 2. Preliminaries

Let $M$ be a connected surface in a Euclidean 3 -space $\mathbb{R}^{3}$. The map $G: M \rightarrow$ $\mathbb{S}^{2}(1) \subset \mathbb{R}^{3}$ which sends each point of $M$ to the unit normal vector to $M$ at the point is called the Gauss map of a surface $M$, where $\mathbb{S}^{2}(1)$ denotes the unit sphere of $\mathbb{R}^{3}$.

Now, we define a surface of revolution in $\mathbb{R}^{3}$. A surface of revolution is formed by revolving a plane curve about a line in $\mathbb{R}^{3}$.

Let $\Pi$ be a plane in $\mathbb{R}^{3}$, let $l$ and $C$ be a line and a point set of a plane curve which does not intersect $l$ in $\Pi$, respectively. When $C$ is revolved in $\mathbb{R}^{3}$ about $l$, the resulting point set $M$ is called the surface of revolution generated by $C$. In this case, $C$ is called the profile curve of $M$ and the line $l$ is called the axis of revolution of $M$. For convenience we choose $\Pi$ to be the $x z$-plane and $l$ to be the $z$-axis. We shall assume that the point set $C$ has a parametrization $\gamma: I=(a, b) \rightarrow C$ defined by $u \mapsto(f(u), 0, g(u))$, which is differentiable. Without loss of generality, we can assume that $f(u)$ is a positive function, and $g$ is a function on $I$. On the other hand, a subgroup of the rotation group which fixes the vector $(0,0,1)$ is generated by

$$
\left(\begin{array}{ccc}
\cos v & -\sin v & 0 \\
\sin v & \cos v & 0 \\
0 & 0 & 1
\end{array}\right)
$$

for any $v \in \mathbb{R}$. Hence the surface $M$ of revolution can be written as

$$
\begin{align*}
x(u, v) & =\left(\begin{array}{ccc}
\cos v & -\sin v & 0 \\
\sin v & \cos v & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f(u) \\
0 \\
g(u)
\end{array}\right)  \tag{2.1}\\
& =(f(u) \cos v, f(u) \sin v, g(u)) .
\end{align*}
$$

Without loss of generality, we may assume that $\gamma$ has the arc-length parametrization, i.e., it satisfies

$$
\begin{equation*}
\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}=1 \tag{2.2}
\end{equation*}
$$

Then, using the natural frame $\left\{x_{u}, x_{v}\right\}$ of $M$ defined by

$$
x_{u}=\left(f^{\prime}(u) \cos v, f^{\prime}(u) \sin v, g^{\prime}(u)\right)
$$

and

$$
x_{v}=(-f(u) \sin v, f(u) \cos v, 0),
$$

the components of the first fundamental form of the surface are obtained as

$$
g_{11}=\left\langle x_{u}, x_{u}\right\rangle=1, \quad g_{12}=\left\langle x_{u}, x_{v}\right\rangle=0, \quad g_{22}=\left\langle x_{v}, x_{v}\right\rangle=f^{2}(u)
$$

Then, the Gauss map $G$ is computed by $\frac{1}{f}\left(x_{u} \times x_{v}\right)$ or, equivalently,

$$
\begin{equation*}
G=\left(-g^{\prime}(u) \cos v,-g^{\prime}(u) \sin v, f^{\prime}(u)\right) . \tag{2.3}
\end{equation*}
$$

Accordingly $G$ can be regarded as a map of $M$ into the 2-dimensional unit sphere $\mathbb{S}^{2}$. By using (2.2) the components of the second fundamental form $h$ are

$$
\begin{equation*}
h_{11}=-f^{\prime \prime}(u) g^{\prime}(u)+f^{\prime}(u) g^{\prime \prime}(u), \quad h_{12}=0, \quad h_{22}=f(u) g^{\prime}(u) . \tag{2.4}
\end{equation*}
$$

Therefore, using the data described above, the mean curvature $H$ is given by

$$
\begin{equation*}
H=\frac{1}{2}\left(\frac{g^{\prime}}{f}-f^{\prime \prime} g^{\prime}+f^{\prime} g^{\prime \prime}\right) \tag{2.5}
\end{equation*}
$$

If a surface $M$ in $\mathbb{R}^{3}$ has no parabolic points, then we have $h_{11} h_{22}-h_{12}^{2} \neq 0$. Thus, the second fundamental form $h$ is regarded as a new (pseudo-)Riemannian metric.

Let $\left\{x_{1}, x_{2}\right\}$ be a local coordinate system of $M$. For the components $h_{i j}(i, j$ $=1,2$ ) of the second fundamental form $h$ on $M$ we denote by $\left(h^{i j}\right)$ (resp. $\mathcal{H}$ ) the inverse matrix (resp. the determinant) of the matrix $\left(h_{i j}\right)$. The Laplace operator $\Delta^{h}$ of the second fundamental form $h$ on $M$ is formally defined by

$$
\begin{equation*}
\Delta^{h}=-\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{i, j=1}^{2} \frac{\partial}{\partial x^{i}}\left(\sqrt{|\mathcal{H}|} h^{i j} \frac{\partial}{\partial x^{j}}\right) . \tag{2.6}
\end{equation*}
$$

## 3. Main theorems

In this section, we will classify the surfaces of revolution in $\mathbb{R}^{3}$ satisfying the condition (1.2).

Theorem 3.1. The only surfaces of revolution in a Euclidean 3-space whose Gauss map $G$ satisfies

$$
\begin{equation*}
\Delta^{h} G=A G, \quad A \in \operatorname{Mat}(3, \mathbb{R}) \tag{3.1}
\end{equation*}
$$

are locally the catenoid and the sphere.

Proof. Let $M$ be a surface of revolution in $\mathbb{R}^{3}$ defined by (2.1). We may assume that the profile curve $\gamma$ is of unit speed; thus

$$
\begin{equation*}
\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}=1 \tag{3.2}
\end{equation*}
$$

We may put

$$
\begin{equation*}
f^{\prime}(u)=\cos t, \quad g^{\prime}(u)=\sin t \tag{3.3}
\end{equation*}
$$

for the smooth function $t=t(u)$. Since the surface has no parabolic points, the functions $f(u), t^{\prime}$ and $\sin t$ are non-vanishing everywhere. Furthermore, the mean curvature $H$ given by (2.5) becomes

$$
\begin{equation*}
H=\frac{1}{2}\left(t^{\prime}+\frac{\sin t}{f}\right) . \tag{3.4}
\end{equation*}
$$

By a straightforward computation, the Laplacian $\Delta^{h}$ of the second fundamental form $h$ on $M$ with the help of (2.4), (2.6) and (3.3) turns out to be

$$
\begin{equation*}
\Delta^{h}=-\frac{1}{t^{\prime}} \frac{\partial^{2}}{\partial u^{2}}-\frac{1}{f \sin t} \frac{\partial^{2}}{\partial v^{2}}+\left(\frac{t^{\prime \prime}}{2 t^{\prime 2}}-\frac{\cos t}{2 f t^{\prime}}-\frac{\cos t}{2 \sin t}\right) \frac{\partial}{\partial u} . \tag{3.5}
\end{equation*}
$$

Accordingly, we get

$$
\Delta^{h} G=\left(\begin{array}{c}
\left(-t^{\prime} \sin t-\frac{1}{2 f}-\frac{\sin ^{2} t}{2 f}+\frac{t^{\prime \prime} \cos t}{2 t^{\prime}}+\frac{t^{\prime} \cos ^{2} t}{2 \sin t}\right) \cos v  \tag{3.6}\\
\left(-t^{\prime} \sin t-\frac{1}{2 f}-\frac{\sin ^{2} t}{2 f}+\frac{t^{\prime \prime} \cos t}{2 t^{\prime}}+\frac{t^{\prime} \cos ^{2} t}{2 \sin t}\right) \sin v \\
\frac{3}{2} t^{\prime} \cos t+\left(\frac{\cos t}{2 f}+\frac{t^{\prime \prime}}{2 t^{\prime}}\right) \sin t
\end{array}\right)
$$

By the assumption (3.1) and the above equation we get the following system of differential equations:

$$
\left\{\begin{array}{l}
\left(-t^{\prime} \sin t-\frac{1}{2 f}-\frac{\sin ^{2} t}{2 f}+\frac{t^{\prime \prime} \cos t}{2 t^{\prime}}+\frac{t^{\prime} \cos ^{2} t}{2 \sin t}+a_{11} \sin t\right) \cos v  \tag{3.7}\\
\quad+a_{12} \sin t \sin v-a_{13} \cos t=0 \\
\left(-t^{\prime} \sin t-\frac{1}{2 f}-\frac{\sin ^{2} t}{2 f}+\frac{t^{\prime \prime} \cos t}{2 t^{\prime}}+\frac{t^{\prime} \cos ^{2} t}{2 \sin t}+a_{22} \sin t\right) \sin v \\
\quad+a_{21} \sin t \cos v-a_{23} \cos t=0 \\
\frac{3}{2} t^{\prime} \cos t+\left(\frac{\cos t}{2 f}+\frac{t^{\prime \prime}}{2 t^{\prime}}\right) \sin t+a_{31} \sin t \cos v+a_{32} \sin t \sin v-a_{33} \cos t=0
\end{array}\right.
$$

where $a_{i j}(i, j=1,2,3)$ denote the components of the matrix $A$ given by (3.1).
In order to prove the theorem we have to solve the above system of ordinary differential equations. From (3.7) we easily deduce that $a_{12}=a_{21}=a_{13}=$ $a_{23}=a_{31}=a_{32}=0$ and $a_{11}=a_{22}$, i.e., the matrix $A$ is diagonal. We put $a_{11}=a_{22}=\lambda$ and $a_{33}=\mu, \lambda, \mu \in \mathbb{R}$. Then, the system (3.7) reduces now to
the following equations

$$
\begin{gather*}
-t^{\prime} \sin t-\frac{1}{2 f}-\frac{\sin ^{2} t}{2 f}+\frac{t^{\prime \prime} \cos t}{2 t^{\prime}}+\frac{t^{\prime} \cos ^{2} t}{2 \sin t}=-\lambda \sin t  \tag{3.8}\\
\frac{3}{2} t^{\prime} \cos t+\left(\frac{\cos t}{2 f}+\frac{t^{\prime \prime}}{2 t^{\prime}}\right) \sin t=\mu \cos t \tag{3.9}
\end{gather*}
$$

We discuss five cases according to the constants $\lambda$ and $\mu$.
Case I. Let $\lambda=\mu=0$.
If we multiply (3.8) by $\sin t$ and (3.9) by $-\cos t$, and add the resulting equations, we easily get

$$
t^{\prime}+\frac{\sin t}{f}=0
$$

which implies the mean curvature $H$ vanishes identically because of (3.4). Therefore, the surface is minimal, that is, it is a catenoid. Furthermore, a catenoid satisfies the condition (3.1).
Case II. Let $\lambda=\mu \neq 0$.
Following the same procedure as in Case I, we can obtain

$$
\begin{equation*}
t^{\prime}=\lambda-\frac{\sin t}{f} \tag{3.10}
\end{equation*}
$$

Differentiating (3.10) with respect to $u$ we have

$$
\begin{equation*}
t^{\prime \prime}=-\frac{\cos t}{f^{2}}(\lambda f-2 \sin t) \tag{3.11}
\end{equation*}
$$

Substituting (3.10) and (3.11) in (3.9) we get

$$
\begin{equation*}
\lambda^{2} f^{2}-4 \lambda \sin t f+4 \sin ^{2} t=0 \tag{3.12}
\end{equation*}
$$

from which,

$$
\begin{equation*}
f(u)=\frac{2}{\lambda} \sin t \tag{3.13}
\end{equation*}
$$

Furthermore, (3.13) together with the equation (3.10) becomes $t^{\prime}=\frac{\lambda}{2}$, that is,

$$
\begin{equation*}
t(u)=\frac{\lambda}{2} u+k, \quad k \in \mathbb{R} \tag{3.14}
\end{equation*}
$$

On the other hand, by (3.3) and (3.14) we have

$$
g^{\prime}(u)=\sin \left(\frac{\lambda}{2} u+k\right)
$$

from which,

$$
\begin{equation*}
g(u)=-\frac{2}{\lambda} \cos \left(\frac{\lambda}{2} u+k\right)+c, \quad c \in \mathbb{R} \tag{3.15}
\end{equation*}
$$

Consequently, from (3.13)-(3.15) we get

$$
\begin{equation*}
\langle x(u, v)-\mathbf{C}, x(u, v)-\mathbf{C}\rangle=f(u)^{2}+(g(u)-c)^{2}=\frac{4}{\lambda^{2}}>0, \quad \mathbf{C}=(0,0, c) \tag{3.16}
\end{equation*}
$$

which means that the surface $M$ is contained in the sphere $\mathbb{S}^{2}$ centered at $\mathbf{C}$ with radius $\frac{2}{|\lambda|}$. Also, a sphere satisfies the condition (3.1).
Case III. Let $\lambda \neq 0, \mu=0$.
In this case (3.8) and (3.9) are given respectively by

$$
\begin{gather*}
-t^{\prime} \sin t-\frac{1}{2 f}-\frac{\sin ^{2} t}{2 f}+\frac{t^{\prime \prime} \cos t}{2 t^{\prime}}+\frac{t^{\prime} \cos ^{2} t}{2 \sin t}=-\lambda \sin t  \tag{3.17}\\
\frac{3}{2} t^{\prime} \cos t+\left(\frac{\cos t}{2 f}+\frac{t^{\prime \prime}}{2 t^{\prime}}\right) \sin t=0 \tag{3.18}
\end{gather*}
$$

From this system of ODEs we have

$$
\begin{equation*}
t^{\prime}=-\frac{\sin t}{f}+\lambda \sin ^{2} t \tag{3.19}
\end{equation*}
$$

and thus

$$
\begin{equation*}
t^{\prime \prime}=-\frac{1}{f^{2}}\left(t^{\prime} \cos t f-\sin t \cos t\right)+2 \lambda t^{\prime} \sin t \cos t \tag{3.20}
\end{equation*}
$$

Substituting (3.19) and (3.20) into (3.18) we get

$$
\begin{equation*}
5 \lambda^{2} \sin ^{2} t f^{2}-8 \lambda \sin t f+4=0 \tag{3.21}
\end{equation*}
$$

Differentiating the above equation gives

$$
\begin{equation*}
5 \lambda \sin t f-4=0 \tag{3.22}
\end{equation*}
$$

If we take the differentiation of the equation once again, we get

$$
\lambda \cos t \sin ^{2} t f=0
$$

Since $f$ is a positive function and $\lambda \neq 0, \cos t \sin ^{2} t=0$ for every $t$, which implies $M$ is a part of a plane whose points are parabolic. Thus, there are no surfaces of revolution satisfying this case.
Case IV. Let $\lambda=0, \mu \neq 0$.
The system of equations (3.8) and (3.9), in this case, takes the form

$$
\begin{gather*}
-t^{\prime} \sin t-\frac{1}{2 f}-\frac{\sin ^{2} t}{2 f}+\frac{t^{\prime \prime} \cos t}{2 t^{\prime}}+\frac{t^{\prime} \cos ^{2} t}{2 \sin t}=0  \tag{3.23}\\
\frac{3}{2} t^{\prime} \cos t+\left(\frac{\cos t}{2 f}+\frac{t^{\prime \prime}}{2 t^{\prime}}\right) \sin t=\mu \cos t \tag{3.24}
\end{gather*}
$$

Applying the same algebraic method as above, we also obtain

$$
\begin{align*}
t^{\prime} & =-\frac{\sin t}{f}+\mu \cos ^{2} t \\
t^{\prime \prime} & =-\frac{1}{f^{2}}\left(t^{\prime} \cos t f-\sin t \cos t\right)-2 \mu t^{\prime} \sin t \cos t \tag{3.25}
\end{align*}
$$

Furthermore, by (3.24) and (3.25) we get

$$
\begin{equation*}
\alpha_{1} f^{2}+\alpha_{2} f+\alpha_{3}=0 \tag{3.26}
\end{equation*}
$$

where we put

$$
\begin{aligned}
& \alpha_{1}=5 \mu^{2} \sin ^{4} t-6 \mu^{2} \sin ^{2} t+\mu^{2} \\
& \alpha_{2}=8 \mu \sin ^{3} t-4 \mu \sin t \\
& \alpha_{3}=4 \sin ^{2} t
\end{aligned}
$$

Differentiating the equation (3.26) and using (3.25) we find

$$
\begin{equation*}
\beta_{1} f^{2}+\beta_{2} f+\beta_{3}=0 \tag{3.27}
\end{equation*}
$$

where

$$
\begin{aligned}
& \beta_{1}=\mu^{2}\left(-10 \sin ^{8} t+8 \sin ^{6} t+12 \sin ^{4} t-8 \sin ^{2} t-2\right) \\
& \beta_{2}=\mu\left(-40 \sin ^{7} t+56 \sin ^{5} t-24 \sin ^{3} t+8 \sin ^{2} t\right) \\
& \beta_{3}=-40 \sin ^{6} t+48 \sin ^{4} t-8 \sin ^{2} t
\end{aligned}
$$

Combining (3.26) and (3.27) we show that

$$
\begin{equation*}
\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) f+\alpha_{3} \beta_{1}-\alpha_{1} \beta_{3}=0 \tag{3.28}
\end{equation*}
$$

Differentiating once again this equation and using the same algebraic techniques above we find the following trigonometric polynomial in $\sin t$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{12} c_{i} \mu^{2} \sin ^{2 i-1} t=0 \tag{3.29}
\end{equation*}
$$

where $c_{i}(i=1,2, \ldots, 12)$ denote the coefficients as non-zero constant of the function $\sin ^{2 i-1} t$. Since this polynomial is equal to zero for every $t$, all its coefficients must be zero. Thus, we have $\mu=0$. So we get a contradiction and therefore, in this case there are no surfaces of revolution.

Case V. Let $\lambda \neq 0, \mu \neq 0$ and $\lambda \neq \mu$.
From (3.8) and (3.9) we have:

$$
\begin{equation*}
t^{\prime}=\lambda \sin ^{2} t+\mu \cos ^{2} t-\frac{\sin t}{f} \tag{3.30}
\end{equation*}
$$

from which, the equation (3.9) is written as

$$
\begin{equation*}
\phi_{1} f^{2}+\phi_{2} f+\phi_{3}=0, \tag{3.31}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi_{1} & =5 \alpha^{2} \sin ^{4} t+6 \mu \alpha \sin ^{2} t+\mu \\
\phi_{2} & =-8 \alpha \sin ^{3} t-4 \mu \sin t \\
\phi_{3} & =4 \sin ^{2} t \\
\alpha & =\lambda-\mu
\end{aligned}
$$

Differentiating the equation (3.31) and using (3.30), we find

$$
\begin{equation*}
\delta_{1} f^{2}+\delta_{2} f+\delta_{3}=0 \tag{3.32}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta_{1}= & -10 \alpha^{4} \sin ^{8} t-8 \alpha^{3} \mu \sin ^{6} t+\left(2 \alpha^{2} \mu^{2}+10 \alpha^{2} \mu\right) \sin ^{4} t \\
& +\left(-4 \alpha \mu^{3}+12 \alpha \mu^{2}\right) \sin ^{2} t+2 \mu^{3}-4 \mu^{4} \\
\delta_{2}= & 40 \alpha^{3} \sin ^{7} t+56 \alpha^{2} \mu \sin ^{5} t+24 \alpha \mu^{2} \sin ^{3} t+8 \mu^{3} \sin t \\
\delta_{3}= & -8 \sin ^{2} t .
\end{aligned}
$$

Combining (3.31) and (3.32), we have

$$
\left(\phi_{2} \delta_{1}-\delta_{2} \phi_{1}\right) f+\phi_{3} \delta_{1}-\delta_{3} \phi_{1}=0
$$

Hence, by this procedure the equation (3.31) is reduced to a linear one with respect to the function $f$. Therefore if we repeat this method one more time, we can find the following polynomial:

$$
\begin{align*}
& 192000 \alpha^{14} \sin ^{32} t+\sum_{i=1}^{13} \alpha^{i} p_{i}(\lambda, \mu) \sin ^{2 i+4} t  \tag{3.33}\\
& +\left(1024 \mu^{13}-2560 \mu^{12}+1536 \mu^{11}+512 \mu^{10}-512 \mu^{9}\right) \sin ^{4} t=0
\end{align*}
$$

where $p_{i}(\lambda, \mu)(i=1, \ldots, 13)$ are the known polynomials in $\lambda$ and $\mu$. Since this polynomial is equal to zero for every $t$, all its coefficients must be zero. Therefore, we conclude that $\alpha=0$, equivalently $\lambda=\mu$ and $\mu=0$ or $\mu=1$ or $\mu=-\frac{1}{2}$, which is a contradiction. Consequently, there are no surfaces of revolution in this case. This completes the proof.

Combining the results of [9] and our Theorem 3.1, we have
Theorem 3.2 (Characterization). Let $M$ be a surface of revolution without parabolic points in a Euclidean 3-space $\mathbb{R}^{3}$. Then for some non-singular matrices $A, A_{h} \in \operatorname{Mat}(3, \mathbb{R})$ the following are equivalent:
(1) $\Delta G=A G$.
(2) $\Delta^{h} G=A_{h} G$.
(3) $M$ is an open part of a sphere.

## References

[1] R. Aiyama, On the Gauss map of complete space-like hypersurfaces of constant mean curvature in Minkowski space, Tsukuba J. Math. 16 (1992), no. 2, 353-361.
[2] L. J. Alías, A. Ferrández, P. Lucas, and M. A. Meroño, On the Gauss map of B-scrolls, Tsukuba J. Math. 22 (1998), no. 2, 371-377.
[3] C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355-359.
[4] C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II 2 (16) (1993), 31-42.
[5] _ , The Chen-type of the spiral surfaces, Results Math. 28 (1995), no. 3-4, 214-223.
[6] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.
[7] S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), no. 2, 351-367.
[8] - On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), no. 2, 285-304.
[9] F. Dillen, J. Pas, and L. Verstralen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica 18 (1990), no. 3, 239-246.
[10] D.-S. Kim, Y. H. Kim, and D. W. Yoon, Extended B-scrolls and their Gauss maps, Indian J. Pure Appl. Math. 33 (2002), no. 7, 1031-1040.
[11] Y. H. Kim and D. W. Yoon, Classifications of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc. 41 (2004), no. 2, 379-396.
$\qquad$ , Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205.
[13] , On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581.
[14] E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573.
[15] D. W. Yoon, On the Gauss map of translation surfaces in Minkowski 3-space, Taiwanese J. Math. 6 (2002), no. 3, 389-398.
[16] , Rotation surfaces with finite type Gauss map in $E^{4}$, Indian J. Pure Appl. Math. 32 (2001), no. 12, 1803-1808.

Young Ho Kim
Department of Mathematics
Teachers' College
Kyungpook National University
Daegu 702-701, Korea
E-mail address: yhkim@knu.ac.kr
Chul Woo Lee
Department of Mathematics
College of Natural Sciences
Kyungpook National University
Daegu 702-701, Korea
E-mail address: cwlee1094@hanmail.net
Dae Won Yoon
Department of Mathematics Education and RINS
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: dwyoon@gnu.ac.kr


[^0]:    Received September 10, 2008.
    2000 Mathematics Subject Classification. 53A05, 53B25.
    Key words and phrases. Gauss map, surface of revolution, Laplace operator, second fundamental form.

